λ-calculus goes to the tropics

Davide Barbarossa (joint with Paolo Pistone) davide.barbarossa@unibo.it https://lipn.univ-paris13.fr/~barbarossa/
 Dipartimento di Informatica

 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA
 Journées d'hiver 2022-23 GdT Scalp

CIRM, 16/02/2023

Differential/resource/Taylor approximation

"Approximate" $M N$ via $\sum_{n \in \mathbb{N}} \frac{1}{n}\left(\mathrm{D}^{n} M \bullet N^{n}\right) 0$.

	Analysis	Differential λ-calculus			
Same shape of $\mathcal{T}(\cdot)$	$\sum_{n \in \mathbb{N}} \frac{1}{n!}\left(\mathrm{D}^{n} f \bullet x^{n}\right) 0$	$\sum_{n \in \mathbb{N}} \frac{1}{n!}\left(\mathrm{D}^{n} M \bullet N^{n}\right) 0$			
Recoyer a complicated object from simple ones	monomials shape $\left(D^{n} M \bullet N^{n}\right) 0$				
Interpretation of $\mathrm{D}(\cdot) \bullet(\cdot)$	The usual differential	A generalisation of it			
(simple $=$ fixed number					
of duplications allowed)			$	$	Can be used as an
:---					
approximation technique	\quad Yes	Yes			
:---					
Meaning of "to approximate"					

Metric semantics, i.e. control error amplification

Yes for the linear (and affine) ST $\lambda \mathrm{C}$
The category pMET of pseudo-metric spaces and non-expansive functions is SMCC.

No for ST λ C pMET is not CCC (However it contains several interesting sub-CCC)

Yes for bounded-duplication calculi
The maps $X \mapsto \mathcal{M}_{\leq n}(X)$ lift to functors $!_{n}: \mathrm{pMET} \rightarrow \mathrm{pMET}$ forming a graded linear exponential comonad on pMET.

A program

$$
\vdash M:!_{n} X \rightarrow Y
$$

is interpreted as a n -Lipschitz function

$$
\llbracket X \rrbracket \rightarrow \llbracket Y \rrbracket .
$$

Two quantitative approaches to duplication

If a program calls x exactly 3 times, say $\left(D^{3} M \bullet x^{3}\right) 0$, then:

	Differential λ-calculus	Bounded-duplication calculi
$\llbracket\left(D^{3} M \bullet x^{3}\right) 0 \rrbracket$	a degree 3 function, say x^{3}	a 3-Lipschitz function, say $3 x$

Question
Is there a way to relate this two approaches?

Tropicalisation

Tropical semiring

\mathbb{L} is the semiring $\mathbb{R}_{\geq 0} \cup\{+\infty\}$ with min as sum and + as product. Equivalently, it is a quantale with \geq as order and + as product.

The zero is $+\infty$, and sum is idempotent: $\min \{x, x\}=x$.

$$
\sum_{n} a_{n} x^{n} \longmapsto+:=\text { inf, }::=+\inf _{n}\left\{a_{n}+n x\right\}
$$

Tropical relational model: the category $\mathbb{L R e l}$

Objects: sets; Morphisms $X \rightarrow Y$: maps $X \times Y \rightarrow \mathbb{L}$. Composition of $X \xrightarrow{t} Y$ and $Y \xrightarrow{s} Z$:

$$
(s \circ t)_{a, c}:=\inf _{b \in Y}\left\{s_{b, c}+t_{a, b}\right\} .
$$

In $\mathbb{L R e l}^{\text {op }}$ you find the usual undergraduate linear algebra formulas for the product matrix-matrix and matrix-vector. Here we use the transpose ones, so that:
$\mathbb{L} \operatorname{Rel}(X, Y) \simeq$ the set of linear maps from the \mathbb{L}-semimodule \mathbb{L}^{X} to \mathbb{L}^{Y}.

Model of the linear ST λ C (or IMLL)

$\mathbb{L R e l}$ is SMCC w.r.t. the tensor product \otimes and internal hom \multimap which act, on objects, as the Cartesian product.

Modeling duplications/erasures

The SMCC $\mathbb{L R e l}$ is Lafont w.r.t. the comonad! which acts, on objects, as the finite multisets operator. Thus:

Model of ST λ C
The coKleisli $\mathbb{L R e l}$! is CCC.

Model of ST $\partial \lambda$ C

$\mathbb{L R e l} l_{!}$is $\mathrm{CC} \partial \mathrm{C}$ w.r.t. the differential $D: \mathbb{L} \operatorname{Rel}(!X, Y) \rightarrow \mathbb{L} \operatorname{Rel}(!(X+X), Y)$:

$$
(D f)_{\mu \oplus \rho, b}:=f_{\rho+\mu, b} \text { if } \# \mu=1 \text { and }+\infty \text { otherwise. }
$$

Taylor

In $\mathbb{L} \operatorname{Rel}_{!}$all morphisms coincide with their Taylor expansion and $\llbracket \mathcal{T}(M) \rrbracket=\llbracket M \rrbracket$.

An example with probabilities

\mathbb{L} Rel models a ST $\lambda \mathrm{C}$ with a coin toss \oplus_{p} constructor, with bias p. Consider

$$
\begin{gathered}
\vdash M:=\left(\text { true } \oplus_{p} \text { false }\right) \oplus_{p}\left(\left(\text { true } \oplus_{p} \text { false }\right) \oplus_{p}\left(\text { false } \oplus_{p} \text { true }\right)\right): \text { Bool } \\
\mathbb{P}(M \rightarrow \text { true })=p^{2}+p^{2} q+q^{3} \quad \mathbb{P}(M \rightarrow \text { false })=p q+2 p q^{2}
\end{gathered}
$$

An example with probabilities

$\mathbb{L} R e l$ models a ST $\lambda \mathrm{C}$ with a coin toss \oplus_{p} constructor, with bias p. Consider

$$
\begin{gathered}
\vdash M:=\left(\text { true } \oplus_{p} \text { false }\right) \oplus_{p}\left(\left(\text { true } \oplus_{p} \text { false }\right) \oplus_{p}\left(\text { false } \oplus_{p} \text { true }\right)\right): \text { Bool } \\
\mathbb{P}(M \rightarrow \text { true })=p^{2}+p^{2} q+q^{3} \quad \mathbb{P}(M \rightarrow \text { false })=p q+2 p q^{2}
\end{gathered}
$$

Choosing \llbracket Bool $\rrbracket:=\{0,1\}, \llbracket M \rrbracket: \mathbb{L} \llbracket^{\llbracket B o o l} \rrbracket \rightarrow \mathbb{L}$ gives the tropicalisations: $\llbracket M \rrbracket_{1}=\min \{2 x, 2 x+y, 3 y\}, \llbracket M \rrbracket_{0}=\min \{x+y, x+2 y\}$.

An example with probabilities

$\mathbb{L R e l}$ models a ST $\lambda \mathrm{C}$ with a coin toss \oplus_{p} constructor, with bias p. Consider

$$
\begin{gathered}
\vdash M:=\left(\text { true } \oplus_{p} \text { false }\right) \oplus_{p}\left(\left(\text { true } \oplus_{p} \text { false }\right) \oplus_{p}\left(\text { false } \oplus_{p} \text { true }\right)\right): \text { Bool } \\
\mathbb{P}(M \rightarrow \text { true })=p^{2}+p^{2} q+q^{3} \quad \mathbb{P}(M \rightarrow \text { false })=p q+2 p q^{2}
\end{gathered}
$$

Choosing \llbracket Bool $\rrbracket:=\{0,1\}, \llbracket M \rrbracket: \mathbb{L} \llbracket^{\llbracket B o o l \rrbracket} \rightarrow \mathbb{L}$ gives the tropicalisations: $\llbracket M \rrbracket_{1}=\min \{2 x, 2 x+y, 3 y\}, \llbracket M \rrbracket_{0}=\min \{x+y, x+2 y\}$.

Knowing that M tossed true, what is the most likely choice for p s.t. the tossed occurrence is the rightmost one? I.e., when $\max \left\{p^{2}, p^{2} q, q^{3}\right\}=q^{3}$? Solution: tropicalise + change of variables! $\llbracket M \rrbracket_{1}=3 y$ iff $y \leq \frac{2}{3} x$; $x:=-\log p, y:=-\log (1-p)$; The problem is equivalent to $-\log (1-p) \leq-\frac{2}{3} \log p$, i.e. $1-p \geq p^{\frac{2}{3}}$. E.g., $p=\frac{1}{4}$.

A selection of results

Expressing a coKleisli (linear) map $f:!X \rightarrow Y$ "in the base X ", yields a tropical Laurent series, i.e. a (non-linear) $f: \mathbb{L}^{X} \rightarrow \mathbb{L}^{Y}$ of shape:

$$
f(x)_{b}:=\inf _{\mu \in \mathcal{M}_{\mathrm{fin}}(X)}\left\{a_{\mu, b}+\mu x\right\}
$$

Let f as above, with $X=Y=\{*\} . \forall \epsilon \in(0,+\infty)$, $\exists \mathcal{F}_{\epsilon} \subseteq_{\text {fin }} \mathbb{N}$ s.t. $f(x)$ coincides on $[\epsilon,+\infty]$ with the tropical polynomial $\min _{n \in \mathcal{F}_{\epsilon}}\left\{a_{n}+n x\right\}$.
$\llbracket \Gamma \vdash_{S T \lambda C} M: X \rrbracket$ is a locally Lipschitz function, inf of Lipschitz ones.

Generalise: no more coordinates in a base!

Let $\mathbb{L M o d}:=$ the category of \mathbb{L}-semimodules and $\mathbb{L C C a t}:=$ the one of complete Lawvere generalised metric spaces (complete in a stronger sense than Cauchy). E.g. the metric on the function space is the usual sup distance.
$\mathbb{L} M$ od and $\mathbb{L} C C a t$ are isomorphic categories.

Model of ST λ C

$\mathbb{L} M o d$ is a SMCC and it admits a Lafont exponential !. Thus the coKleisli $\mathbb{L M o d}_{!}$is CCC.

For semimodules of shape \mathbb{L}^{X}, the SMCC structure and! coincide with that of $\mathbb{L} R e l$.

Model of ST $\partial \lambda$ C
We can define a differential operator on $\mathbb{L} M o d!$ making it a CC $\partial \mathrm{C}$.

