λ -calculus goes to the tropics

Davide Barbarossa (joint with Paolo Pistone) davide.barbarossa@unibo.it https://lipn.univ-paris13.fr/~barbarossa/

Dipartimento di Informatica

ALMA MATER STUDIORUM Università di Bologna

Journées d'hiver 2022-23 GdT Scalp

CIRM, 16/02/2023

Davide Barbarossa

 $\lambda\text{-calculus}$ goes to the tropics

Differential/resource/Taylor approximation

"Approximate" MN via $\sum_{n \in \mathbb{N}} \frac{1}{n!} (D^n M \bullet N^n) 0.$

	Analysis	Differential λ -calculus
Same shape of $\mathcal{T}(\cdot)$	$\sum_{n\in\mathbb{N}}\frac{1}{n!}(D^n f\bullet x^n)0$	$\sum_{n\in\mathbb{N}}\frac{1}{n!}(D^nM\bullet N^n)0$
Recover a complicated object from simple ones	monomials	Resource terms, i.e. of shape $(D^n M \bullet N^n)0$
	(simple = finite degree)	(simple = <i>fixed number</i> of duplications allowed)
Interpretation of $D(\cdot) \bullet (\cdot)$	The usual differential	A generalisation of it
Can be <i>used as</i> an	Yes	Yes
approximation technique		
Meaning of	Can control the <i>distance</i> between	3.
"to approximate"	simple objects and the complicated one	

Metric semantics, i.e. control error amplification

Yes for the *linear* (and *affine*) $ST\lambda C$

The category pMET of pseudo-metric spaces and non-expansive functions is SMCC.

No for $ST\lambda C$

pMET is *not* CCC (However it contains several interesting sub-CCC)

Yes for bounded-duplication calculi

The maps $X \mapsto \mathcal{M}_{\leq n}(X)$ lift to functors $!_n : pMET \to pMET$ forming a graded linear exponential comonad on pMET.

A program

$$\vdash M : !_n X \rightarrow Y$$

is interpreted as a n-Lipschitz function

$$\llbracket X \rrbracket \to \llbracket Y \rrbracket.$$

Two quantitative approaches to duplication

If a program calls x exactly 3 times, say $(D^3M \bullet x^3)0$, then:

	Differential λ -calculus	Bounded-duplication calculi
$\llbracket (D^3 M \bullet x^3) 0 \rrbracket$	a degree 3 function, say x^3	a 3-Lipschitz function, say $3x$

Question

Is there a way to relate this two approaches?

Tropicalisation

Tropical semiring

L is the semiring $\mathbb{R}_{\geq 0} \cup \{+\infty\}$ with min as sum and + as product. Equivalently, it is a quantale with \geq as order and + as product.

The zero is $+\infty$, and sum is idempotent: min $\{x, x\} = x$.

$$x^3 \xrightarrow{\cdot:=+} 3x$$

$$\sum_{n} a_n x^n \longmapsto \stackrel{+:=\inf, \cdot :=+}{\longrightarrow} \inf_n \{a_n + nx\}$$

Tropical relational model: the category $\mathbb{L}Rel$

Objects: sets; Morphisms $X \to Y$: maps $X \times Y \to \mathbb{L}$. Composition of $X \xrightarrow{t} Y$ and $Y \xrightarrow{s} Z$:

$$(s \circ t)_{a,c} := \inf_{b \in Y} \{s_{b,c} + t_{a,b}\}.$$

In LRel^{op} you find the usual undergraduate linear algebra formulas for the product matrix-matrix and matrix-vector. Here we use the transpose ones, so that:

 \mathbb{L} Rel $(X, Y) \simeq$ the set of linear maps from the \mathbb{L} -semimodule \mathbb{L}^X to \mathbb{L}^Y .

Model of the *linear* ST λ C (or IMLL)

LRel is SMCC w.r.t. the tensor product \otimes and internal hom $-\infty$ which act, on objects, as the Cartesian product.

Modeling duplications/erasures

The SMCC LRel is Lafont w.r.t. the comonad ! which acts, on objects, as the finite multisets operator. Thus:

Model of $ST\lambda C$ The coKleisli $\mathbb{L}Rel_1$ is CCC.

Model of $ST\partial \lambda C$

 $\mathbb{L}\operatorname{Rel}_{!}$ is $\operatorname{CC}\partial\operatorname{C}$ w.r.t. the differential $D: \mathbb{L}\operatorname{Rel}(!X, Y) \to \mathbb{L}\operatorname{Rel}(!(X + X), Y)$:

 $(Df)_{\mu\oplus\rho,b} := f_{\rho+\mu,b}$ if $\#\mu = 1$ and $+\infty$ otherwise.

Taylor

In \mathbb{L} Rel! all morphisms coincide with their Taylor expansion and $[[\mathcal{T}(M)]] = [[M]]$.

Davide Barbarossa

 λ -calculus goes to the tropics

An example with probabilities

 \mathbb{L} Rel models a ST λ C with a coin toss \oplus_p constructor, with bias p. Consider

$$\vdash M := (\texttt{true} \oplus_p \texttt{false}) \oplus_p ((\texttt{true} \oplus_p \texttt{false}) \oplus_p (\texttt{false} \oplus_p \texttt{true})) : \text{Bool}$$
$$\mathbb{P}(M \twoheadrightarrow \texttt{true}) = p^2 + p^2 q + q^3 \qquad \mathbb{P}(M \twoheadrightarrow \texttt{false}) = pq + 2pq^2$$

An example with probabilities

 \mathbb{L} Rel models a ST λ C with a coin toss \oplus_p constructor, with bias p. Consider

$$\begin{split} \vdash M &:= (\texttt{true} \oplus_p \texttt{false}) \oplus_p ((\texttt{true} \oplus_p \texttt{false}) \oplus_p (\texttt{false} \oplus_p \texttt{true})) : \text{Bool} \\ \mathbb{P}(M \twoheadrightarrow \texttt{true}) &= p^2 + p^2 q + q^3 \qquad \mathbb{P}(M \twoheadrightarrow \texttt{false}) = pq + 2pq^2 \\ \texttt{Choosing} [\![\text{Bool}]\!] &:= \{0, 1\}, [\![M]\!] : \mathbb{L}^{[\![\text{Bool}]\!]} \to \mathbb{L} \text{ gives the tropicalisations:} \\ [\![M]\!]_1 &= \min\{2x, 2x + y, 3y\}, [\![M]\!]_0 = \min\{x + y, x + 2y\}. \end{split}$$

An example with probabilities

 \mathbb{L} Rel models a ST λ C with a coin toss \oplus_p constructor, with bias p. Consider

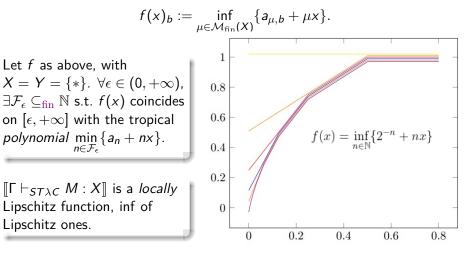
 $\vdash M := (\operatorname{true} \oplus_{p} \operatorname{false}) \oplus_{p} ((\operatorname{true} \oplus_{p} \operatorname{false}) \oplus_{p} (\operatorname{false} \oplus_{p} \operatorname{true})) : \operatorname{Bool}$ $\mathbb{P}(M \twoheadrightarrow \operatorname{true}) = p^{2} + p^{2}q + q^{3} \qquad \mathbb{P}(M \twoheadrightarrow \operatorname{false}) = pq + 2pq^{2}$ $\operatorname{Choosing} [\operatorname{Bool}] := \{0, 1\}, [\![M]\!] : \mathbb{L}^{[\operatorname{Bool}]\!]} \to \mathbb{L} \text{ gives the tropicalisations:}$ $[\![M]\!]_{1} = \min\{2x, 2x + y, 3y\}, [\![M]\!]_{0} = \min\{x + y, x + 2y\}.$

Knowing that M tossed true, what is the most likely choice for p s.t. the tossed occurrence is the rightmost one? I.e., when $\max\{p^2, p^2q, q^3\} = q^3$?

Solution: tropicalise + change of variables! $\llbracket M \rrbracket_1 = 3y$ iff $y \le \frac{2}{3}x$; $x := -\log p, y := -\log(1-p)$; The problem is equivalent to $-\log(1-p) \le -\frac{2}{3}\log p$, i.e. $1-p \ge p^{\frac{2}{3}}$. E.g., $p = \frac{1}{4}$.

A selection of results

Expressing a coKleisli (linear) map $f : X \to Y$ "in the base X", yields a *tropical Laurent series*, i.e. a (non-linear) $f : \mathbb{L}^X \to \mathbb{L}^Y$ of shape:



Generalise: no more coordinates in a base!

Let $\mathbb{L}Mod :=$ the category of \mathbb{L} -semimodules and $\mathbb{L}CCat :=$ the one of complete Lawvere generalised metric spaces (*complete* in a stronger sense than Cauchy). E.g. the metric on the function space is the usual sup distance.

 $\mathbb{L}Mod$ and $\mathbb{L}CCat$ are isomorphic categories.

Model of ${\rm ST}\lambda{\rm C}$

 $\mathbb{L}Mod$ is a SMCC and it admits a Lafont exponential !. Thus the coKleisli $\mathbb{L}Mod_{!}$ is CCC.

For semimodules of shape \mathbb{L}^X , the SMCC structure and ! coincide with that of \mathbb{L} Rel.

Model of $ST\partial\lambda C$

We can define a differential operator on $\mathbb{L}\mathrm{Mod}_{!}$ making it a CC $\partial C.$

