
Dialectica, its realisers and Hoare logic

Davide Barbarossa joint work with Thomas Powell

db2437@bath.ac.uk

https://davidebarbarossa12.github.io/

Department of Computer Science

08/04/2025

1 / 23

db2437@bath.ac.uk
https://davidebarbarossa12.github.io/

Table of contents

1 Dialectica: overview

2 Dialectica Hoare Logic

3 Classical logic: Dialectica ◦ ¬¬

4 Towards an Imperative Dialectica

5 Conclusions

2 / 23

Dialectica: overview

1 Dialectica: overview

2 Dialectica Hoare Logic

3 Classical logic: Dialectica ◦ ¬¬

4 Towards an Imperative Dialectica

5 Conclusions

3 / 23

Dialectica: overview

Source → Target

Gödel
(’58)

A ∈ HA 7−→ AD{w, c} ∈ T
such that

⊢HA A =⇒ ⊢T AD{M, c} for some M ∈ T

4 / 23

Dialectica: overview

Source → Target

Gödel
(’58)

A ∈ HA 7−→ AD{w, c} ∈ T
such that

⊢HA A =⇒ ⊢T AD{M, c} for some M ∈ T

De
Paiva
(’91)
+

Pédrot
(’15)

A ∈ Λ 7−→ W (A), C(A) ∈ P
M ∈ Λ 7−→ M•, Mx ∈ P (for x variable)

such that

x : A ⊢Λ M : B =⇒

{
x : W (A) ⊢P M• : W (B)

x : W (A) ⊢P Mx : C(B) → M[C(A)]

4 / 23

Dialectica: overview How proof/program theorists like it

A ∈ Λ 7−→ W (A), C(A) ∈ P

α E → F

W αW

W (E) → W (F)
×

W (E)× C(F) → M[C(E)]

C αC W (E)× C(F)

M ∈ Λ 7−→ M•, My ∈ P

x λx.M PQ

(_)• x
〈

λx.M•

λπ.(λx.Mx)π1π2

〉
P•1Q•

(_)y

{
λπ.[π], x = y
λπ.0, y ̸= y

λπ.(λx.My)π1π2 λπ.

 Py⟨Q•, π⟩
+

P•2⟨Q•, π⟩>>=Qy


5 / 23

Dialectica: overview How proof miners like it

High-order Weak-Extensional Heyting-Arithmetic (WE-HAω)

Terms PL: Simply typed System T with ground type nat

Formulas: Usual ones, they talk about numbers and high-order T-terms
Axioms:

equality
+
PA
+

(if b then s else t = s) ∨b (if b then s else t = t)
+

(rec z y n = y) ∨n (rec z y n = z (n− 1) (rec z y (n− 1)))

Rules:
Intuitionistic Logic

+
A0 → t = s A0 quantifier free
A0 → B{x := t} → B{x := s}

6 / 23

Dialectica: overview How proof miners like it

High-order Weak-Extensional Heyting-Arithmetic (WE-HAω)

Terms PL: Simply typed System T with ground type nat

Formulas: Usual ones, they talk about numbers and high-order T-terms
Axioms:

equality
+
PA
+

(if b then s else t = s) ∨b (if b then s else t = t)
+

(rec z y n = y) ∨n (rec z y n = z (n− 1) (rec z y (n− 1)))

Rules:
Intuitionistic Logic

+
A0 → t = s A0 quantifier free
A0 → B{x := t} → B{x := s}

6 / 23

Dialectica: overview How proof miners like it

High-order Weak-Extensional Heyting-Arithmetic (WE-HAω)

Terms PL: Simply typed System T with ground type nat

Formulas: Usual ones, they talk about numbers and high-order T-terms

Axioms:

equality
+
PA
+

(if b then s else t = s) ∨b (if b then s else t = t)
+

(rec z y n = y) ∨n (rec z y n = z (n− 1) (rec z y (n− 1)))

Rules:
Intuitionistic Logic

+
A0 → t = s A0 quantifier free
A0 → B{x := t} → B{x := s}

6 / 23

Dialectica: overview How proof miners like it

High-order Weak-Extensional Heyting-Arithmetic (WE-HAω)

Terms PL: Simply typed System T with ground type nat

Formulas: Usual ones, they talk about numbers and high-order T-terms
Axioms:

equality
+
PA
+

(if b then s else t = s) ∨b (if b then s else t = t)
+

(rec z y n = y) ∨n (rec z y n = z (n− 1) (rec z y (n− 1)))

Rules:
Intuitionistic Logic

+
A0 → t = s A0 quantifier free
A0 → B{x := t} → B{x := s}

6 / 23

Dialectica: overview How proof miners like it

High-order Weak-Extensional Heyting-Arithmetic (WE-HAω)

Terms PL: Simply typed System T with ground type nat

Formulas: Usual ones, they talk about numbers and high-order T-terms
Axioms:

equality
+
PA
+

(if b then s else t = s) ∨b (if b then s else t = t)
+

(rec z y n = y) ∨n (rec z y n = z (n− 1) (rec z y (n− 1)))

Rules:
Intuitionistic Logic

+
A0 → t = s A0 quantifier free
A0 → B{x := t} → B{x := s}

6 / 23

Dialectica: overview How proof miners like it

Dialectica for WE-HAω in WE-HAω

Formulas −→ q.f.Formulas ×
→
Var×

→
Var

A 7−→ (|A| , W (A) , C(B)), written |A|W (A)
C(A)

defined by:

|A|∅∅ := A if A is atomic

|A ∧B|x,uy,v := |A|xy ∧ |B|uv

|A ∨B|b
nat,x,u

y,v := |A|xy ∨bnat |B|uv

|A → B|f,Fx,v := |A|xFxv → |B|fxv

|∀x.A|fz,y := |A{x := z}|fzy

|∃x.A|z,uy := |A{x := z}|uy

7 / 23

Dialectica: overview How proof miners like it

Dialectica for WE-HAω in WE-HAω

Formulas −→ q.f.Formulas ×
→
Var×

→
Var

A 7−→ (|A| , W (A) , C(B)), written |A|W (A)
C(A)

Theorem (Soundness of Dialectica)

WE-HAω ⊢ A ⇒ WE-HAω ⊢ ∀y. |A|ay
where a ∈ T is “extracted” from the proof of A

7 / 23

Dialectica: overview How proof miners like it

Dialectica for WE-HAω in WE-HAω

Formulas −→ q.f.Formulas ×
→
Var×

→
Var

A 7−→ (|A| , W (A) , C(B)), written |A|W (A)
C(A)

Theorem (Soundness of Dialectica)
If WE-HAω

∆ ⊇ WE-HAω proves the Dialectica of ∆, then:

∆+ WE-HAω ⊢ A ⇒ WE-HAω
∆ ⊢ ∀y. |A|ay

where a ∈ T is “extracted” from the proof of A

7 / 23

Dialectica: overview How proof miners like it

Dialectica for WE-HAω in WE-HAω

Formulas −→ q.f.Formulas ×
→
Var×

→
Var

A 7−→ (|A| , W (A) , C(B)), written |A|W (A)
C(A)

Theorem (Soundness of Dialectica)
If WE-HAω

∆ ⊇ WE-HAω proves the Dialectica of ∆, then:

∆+ WE-HAω ⊢ M : A ⇒ WE-HAω
∆ ⊢ ∀y. |A|M

•

y

where (_) 7−→ (_)• is a program transformation like the first slides

7 / 23

Dialectica: overview How “realisabilitists” like it (?)

Dialectica is a realisability interpretation

(with a stronger condition on the implication)

Theorem (Adequacy of Dialectica realisability)
If d ⊩ ∆, then:

∆ ⊢ M : A ⇒ M•{d} ⊩ A

where (_) 7−→ (_)• is a program transformation like the first slides

8 / 23

Dialectica Hoare Logic

1 Dialectica: overview

2 Dialectica Hoare Logic

3 Classical logic: Dialectica ◦ ¬¬

4 Towards an Imperative Dialectica

5 Conclusions

9 / 23

Dialectica Hoare Logic

Hoare Triple: A⟨f⟩B
First intuition: f : A → B.

More precise intuition: it stands for the formula

∀States.(A → B{s := fs})

Theorem (Hoare Logic Soundness)
If the judgment A⟨f⟩B is derivable, then the formula above is provable (in some
ambient theory, say WE-HAω). So, second intuition: f ⊩Hoare A → B.

Say A and B are quantifier-free. Then the above formula is:

∀States. |∃x.A → ∃x.B|f,∅(s,∅),∅

Let’s take this seriously in all its generality:

A ⟨f |F ⟩B := ∀s v. |A → B|f,Fs,v

for A,B any formula. Intuition: ⟨f |F ⟩ ⊩Dialectica A → B.

10 / 23

Dialectica Hoare Logic

Hoare Triple: A⟨f⟩B
First intuition: f : A → B. More precise intuition: it stands for the formula

∀States.(A → B{s := fs})

Theorem (Hoare Logic Soundness)
If the judgment A⟨f⟩B is derivable, then the formula above is provable (in some
ambient theory, say WE-HAω). So, second intuition: f ⊩Hoare A → B.

Say A and B are quantifier-free. Then the above formula is:

∀States. |∃x.A → ∃x.B|f,∅(s,∅),∅

Let’s take this seriously in all its generality:

A ⟨f |F ⟩B := ∀s v. |A → B|f,Fs,v

for A,B any formula. Intuition: ⟨f |F ⟩ ⊩Dialectica A → B.

10 / 23

Dialectica Hoare Logic

Hoare Triple: A⟨f⟩B
First intuition: f : A → B. More precise intuition: it stands for the formula

∀States.(A → B{s := fs})

Theorem (Hoare Logic Soundness)
If the judgment A⟨f⟩B is derivable, then the formula above is provable (in some
ambient theory, say WE-HAω). So, second intuition: f ⊩Hoare A → B.

Say A and B are quantifier-free. Then the above formula is:

∀States. |∃x.A → ∃x.B|f,∅(s,∅),∅

Let’s take this seriously in all its generality:

A ⟨f |F ⟩B := ∀s v. |A → B|f,Fs,v

for A,B any formula. Intuition: ⟨f |F ⟩ ⊩Dialectica A → B.

10 / 23

Dialectica Hoare Logic

Hoare Triple: A⟨f⟩B
First intuition: f : A → B. More precise intuition: it stands for the formula

∀States.(A → B{s := fs})

Theorem (Hoare Logic Soundness)
If the judgment A⟨f⟩B is derivable, then the formula above is provable (in some
ambient theory, say WE-HAω). So, second intuition: f ⊩Hoare A → B.

Say A and B are quantifier-free. Then the above formula is:

∀States. |∃x.A → ∃x.B|f,∅(s,∅),∅

Let’s take this seriously in all its generality:

A ⟨f |F ⟩B := ∀s v. |A → B|f,Fs,v

for A,B any formula. Intuition: ⟨f |F ⟩ ⊩Dialectica A → B.

10 / 23

Dialectica Hoare Logic

Dialectica Hoare Logic (DHL)

Rules for deriving judgments A ⟨f |F ⟩B, with A,B ∈ WE-HAω and f, F ∈ T,
such that

Theorem (Dialectica Hoare Logic Soundness)
If the judgment

A ⟨f |F ⟩B

is derivable in DHL, then

WE-HAω ⊢ ∀s v. |A|sFsv → |B|fsv .

Usual Soundness Theorem by Gödel. But with the focus on programs f, F and
DHL as a specification system for them, instead of on formulas.

See also De Paiva’s thesis and Pédrot’s thesis!

11 / 23

Dialectica Hoare Logic

Dialectica Hoare Logic (DHL)

Rules for deriving judgments A ⟨f |F ⟩B, with A,B ∈ WE-HAω and f, F ∈ T,
such that

Theorem (Dialectica Hoare Logic Soundness)
If the judgment

A ⟨f |F ⟩B

is derivable in DHL, then

WE-HAω ⊢ ∀s v. |A|sFsv → |B|fsv .

Usual Soundness Theorem by Gödel. But with the focus on programs f, F and
DHL as a specification system for them, instead of on formulas.

See also De Paiva’s thesis and Pédrot’s thesis!

11 / 23

Dialectica Hoare Logic DHL rules

⊥⟨a | −⟩P P ⟨− |α⟩⊤ P ⟨I | proj2⟩P
P∃ → Q∀ ∈ Ax

P∃ ⟨− |−⟩Q∀

P∃ ⟨− |−⟩Q∀
P ′
∃ ⟨− |−⟩Q′

∀
for

P∃ → Q∀
P ′
∃ → Q′

∀
∈ Rule

P ⟨a, b |α⟩Q ∧ R

P ⟨b, a | α̃⟩R ∧ Q
p∧R

P ∧ Q ⟨a |α, β⟩R

Q ∧ P ⟨ã | β̃, α̃⟩R
p∧L

P ⟨a, b |α⟩Q ∨c R

P ⟨b, a | α̃⟩R ∨c̄ Q
p∨R

P ∨c Q ⟨a |α, β⟩R

Q ∨c̄ P ⟨ã | β̃, α̃⟩R
p∨L

P ⟨a |α⟩Q

P ⟨a, b |απ⟩Q ∨0 R
∨R

P ⟨a |α⟩Q

P ∧ R ⟨aπ |απ, β⟩Q
∧L

P ⟨a, b |α⟩Q ∧ R

P ⟨a |αp⟩Q
∧R

P ∨0 R ⟨a |α, β⟩Q

P ⟨ap |αp⟩Q
∨L

P ∧ ϕ ⟨a |α⟩R Q ∧ ¬ϕ ⟨b | β⟩R ϕ qf

P ∨ Q ⟨λx, y.ifϕ then ax else by |απ, βπ⟩R
condL

P ⟨a |α⟩Q P ⟨b | β⟩R

P ⟨a, b |λx, v, w.if |P |xαxv then βxw else αxv⟩Q ∧ R
condR

P ⟨a, b |α⟩Q → R

P ∧ Q ⟨a |α, b⟩R
uncurry

P ∧ Q ⟨a |α, β⟩R

P ⟨a, β |α⟩Q → R
curry

P ⟨a |α⟩Q Q ⟨b | β⟩R

P ⟨λx.b(a(x)) |λx,w. αx(β(ax)w)⟩R
comp

P ⟨a |α⟩Q(t)

P ⟨λ_.t, a |α⟩ ∃xQ(x)
∃R

P (t) ⟨a |α⟩Q

∀xP (x) ⟨λf.a(ft) |λ_.t, λf.α(ft)⟩Q
∀L

P (x) ⟨a |α⟩Q

∃xP (x) ⟨λx.a |λx.α⟩Q
∃L(x /∈ Q)

P ⟨a |α⟩Q(x)

P ⟨λy, x.ay |λy, x.αy⟩ ∀xQ(x)
∀R(x /∈ P)

∃xP (x) ⟨a |α⟩Q

P (t) ⟨at |αt⟩Q
sL

P ⟨a |α⟩ ∀xQ(x)

P ⟨λy.ayt |λy, v.αytv⟩Q(t)
sR

P∀ ⟨a, b |α⟩ ∃xQ(x)

P∀ ⟨b |α⟩Q(a)
ϵR

∀xP∀(x) ⟨− |α, β⟩Qqf

P∀(α) ⟨− | β⟩Qqf

ϵL

P ′ ⟨I | proj2⟩P P ⟨a |α⟩Q Q ⟨I | proj2⟩Q′

P ′ ⟨a |α⟩Q′
cons

P ⟨a |α⟩Q a, α = b, β

P ⟨b | β⟩Q
ext

P (x) ⟨a(x) |α(x)⟩P (x + 1)

P (0) ⟨rec a | rec∗aα⟩ ∀x. P (x)
ind

12 / 23

Dialectica Hoare Logic Adding the While to Gödel

Update WE-HAω

Term PL: · · · | ≺: X → X → nat

| whilerecϕ,a : (X → U) → (X → U → U) → X → U

Formulas: same as before
Axioms: same as before + the following for ϕ{x} q.f.:

(ϕ{x := y} → ay ≺ y) →
whilerecϕ,a uF y =U ifϕ{x := y} then F y (whilerecϕ,a uF (ay)) else (uy)

Rules: same as before +
∀x. ((∀y ≺ x.A{x := y}) → A)

∀x.A

Remark
The sugars

while ϕ do a := whilerecϕ,a I proj2 : X → X
while∗ ϕ do (a, α) := whilerecϕ,a proj2 (λx, f, v. αx(fv)) : X → V → V

behave in WE-HAω like a usual well-founded while and a backward while, resp.

13 / 23

Dialectica Hoare Logic Adding the While to Gödel

Update WE-HAω

Term PL: · · · | ≺: X → X → nat

| whilerecϕ,a : (X → U) → (X → U → U) → X → U

Formulas: same as before
Axioms: same as before + the following for ϕ{x} q.f.:

(ϕ{x := y} → ay ≺ y) →
whilerecϕ,a uF y =U ifϕ{x := y} then F y (whilerecϕ,a uF (ay)) else (uy)

Rules: same as before +
∀x. ((∀y ≺ x.A{x := y}) → A)

∀x.A

Remark
The sugars

while ϕ do a := whilerecϕ,a I proj2 : X → X
while∗ ϕ do (a, α) := whilerecϕ,a proj2 (λx, f, v. αx(fv)) : X → V → V

behave in WE-HAω like a usual well-founded while and a backward while, resp.

13 / 23

Dialectica Hoare Logic Adding the While to Gödel

Update WE-HAω

Term PL: · · · | ≺: X → X → nat

| whilerecϕ,a : (X → U) → (X → U → U) → X → U

Formulas: same as before
Axioms: same as before + the following for ϕ{x} q.f.:

(ϕ{x := y} → ay ≺ y) →
whilerecϕ,a uF y =U ifϕ{x := y} then F y (whilerecϕ,a uF (ay)) else (uy)

Rules: same as before +
∀x. ((∀y ≺ x.A{x := y}) → A)

∀x.A

Remark
The sugars

while ϕ do a := whilerecϕ,a I proj2 : X → X
while∗ ϕ do (a, α) := whilerecϕ,a proj2 (λx, f, v. αx(fv)) : X → V → V

behave in WE-HAω like a usual well-founded while and a backward while, resp.

13 / 23

Dialectica Hoare Logic Adding the While to Gödel

Dialectica with While

Add to DHL the rule:

∃x (P∀(x) ∧ ϕ(x)) ⟨a |α⟩ ∃xP∀(x) ∀x (ϕ(x) → ax ≺ x)

∃xP∀(x) ⟨while ϕ do a | while∗ ϕ do (a, α)⟩ ∃x (P∀(x) ∧ ¬ϕ(x))

Theorem
Dialectica Hoare Logic Soundness keeps holding.

14 / 23

Classical logic: Dialectica ◦ ¬¬

1 Dialectica: overview

2 Dialectica Hoare Logic

3 Classical logic: Dialectica ◦ ¬¬

4 Towards an Imperative Dialectica

5 Conclusions

15 / 23

Classical logic: Dialectica ◦ ¬¬ A minimum principle

∃x. θ ⊢ ∃x. (θ ∧ ∀y ≺ x.¬ θ(y))

with ≺ well-founded and θ{xX} quantifier-free.

θ ∧ ϕg ⟨− |−⟩ θ(gx)
∃R

θ ∧ ϕg ⟨gx | −⟩ ∃y. θ(y)
∃L∃x. (θ ∧ ϕg) ⟨g | −⟩ ∃y. θ(y) ∀x. (ϕg → gx ≺ x)

while
∃x. θ ⟨while ϕg do g | −⟩ ∃y. (θ(y) ∧ ¬ϕg)

∀R∃x. θ ⟨λx, g.(while ϕg do g)x | −⟩ ∀g∃y. (θ(y) ∧ ¬ϕg(y))
N

∃x. θ ⟨λx, g.(while ϕg do g)x | −⟩¬¬∃y. (θ(y) ∧ ∀z ≺ y.¬θ(z))
contrapositive

¬∃y. (θ(y) ∧ ∀z ≺ y.¬θ(z)) ⟨− |λx, g.(while ϕg do g)x⟩ ¬∃x. θ

with ϕg := gx ≺ x ∧ θ(gx).

Idea: trial-and-error. (Appears very often in proof mining).

16 / 23

Towards an Imperative Dialectica

1 Dialectica: overview

2 Dialectica Hoare Logic

3 Classical logic: Dialectica ◦ ¬¬

4 Towards an Imperative Dialectica

5 Conclusions

17 / 23

Towards an Imperative Dialectica

Fix fresh sets of commands ⃗Comm, ⃗Comm and consider
LOOPD := IMP with commands from above and without variable allocation:

C ::= skip | ⟨c | γ⟩ | C;C | ifϕ then C else C | while ϕ do C

Fix T-types S, T and translations ⃗Comm → TS→S and ⃗Comm → TS→T→T .

Define a translation LOOPD → TS→S × TS→T→T :

LOOPD (_)+ (_)−

skip I proj2
⟨c | γ⟩ c γ

C1;C2 λx.C+
2 (C+

1 x) λx,w. C−
1 x(C−

2 (C+
1 x)w)

ifϕ then C1 else C2 λs.ifϕ(s) then C+
1 s else C+

2 s λs, t.ifϕ(s) then C−
1 st else C−

2 st

while ϕ do C while ϕ do C+ (while∗ ϕ doC+), C−

18 / 23

Towards an Imperative Dialectica

Fix fresh sets of commands ⃗Comm, ⃗Comm and consider
LOOPD := IMP with commands from above and without variable allocation:

C ::= skip | ⟨c | γ⟩ | C;C | ifϕ then C else C | while ϕ do C

Fix T-types S, T and translations ⃗Comm → TS→S and ⃗Comm → TS→T→T .

Define a translation LOOPD → TS→S × TS→T→T :

LOOPD (_)+ (_)−

skip I proj2
⟨c | γ⟩ c γ

C1;C2 λx.C+
2 (C+

1 x) λx,w. C−
1 x(C−

2 (C+
1 x)w)

ifϕ then C1 else C2 λs.ifϕ(s) then C+
1 s else C+

2 s λs, t.ifϕ(s) then C−
1 st else C−

2 st

while ϕ do C while ϕ do C+ (while∗ ϕ doC+), C−

18 / 23

Towards an Imperative Dialectica

Hoare Logic for LOOPD

[P] skip [P]

P (s, γst) → Q(cs, t) ∈ Ax

[P] ⟨c | γ⟩ [Q]

[P]C1 [Q] [Q]C2 [R]

[P]C1;C2 [R]

[P ∧ ϕ]C1 [R] [Q ∧ ¬ϕ]C2 [R]

[P ∨ϕ Q] ifϕ then C1 else C2 [R]

[P ∧ ϕ]C [P] ϕ(s) → C+s ≺ s

[P] while ϕ do C [P ∧ ¬ϕ]

P ′(s, t) → P (s, t) [P]C [Q] Q(s, t) → Q′(s, t)

[P ′]C [Q′]

where the formulas and their provability are wrt the ambient WE-HAω.

Theorem (Soundness wrt Dialectica)
Let P,Q quantifier free with only one variable sS and one tT . Then

[P]C [Q] ⇒ ∃s∀t.P ⟨C+ |C−⟩ ∃s∀t.Q
and

WE-HAω ⊢ ∀s, v. P{t := C−st} → Q{s := C+s}

19 / 23

Towards an Imperative Dialectica

Big-step Operational semantics of LOOPD

Forward OS: ⇓⃗ ⊆ (TS)
∗ × LOOPD × TS × (TS)

∗ × (TS→T→T)
∗

s, skip ⇓⃗ s, ϵ, ϵ s, ⟨c | γ⟩ ⇓⃗ cs, s :: ϵ, γ :: ϵ

s, C1 ⇓⃗ s′, σ,Γ s′, C2 ⇓⃗ s′′, σ′,Γ′

s, C1;C2 ⇓⃗ s′′, σ′ :: σ,Γ′ :: Γ

ϕ(s) s, C1 ⇓⃗ s′, σ,Γ

s, ifϕ then C1 else C2 ⇓⃗ s′, σ,Γ

¬ϕ(s) s, C2 ⇓⃗ s′, σ,Γ

s, ifϕ then C1 else C2 ⇓⃗ s′, σ,Γ

¬ϕ(s)
s, while ϕ do C ⇓⃗ s, ϵ, ϵ

ϕ(s) s, C ⇓⃗ s′, σ,Γ s′ ≺ s s′, while ϕ do C ⇓⃗ s′′, σ′,Γ′

s, while ϕ do C ⇓⃗ s′′, σ′ :: σ,Γ′ :: Γ

Backward OS: ⃗⇓ ⊆ (TS)
∗ × (TS→T→T)

∗ × TT × (TS)
∗ × (TS→T→T)∗ × TT

σ,Γ, t ⃗⇓σ,Γ, t s :: σ, γ :: Γ, t ⃗⇓σ,Γ, γst

σ,Γ, t ⃗⇓σ′,Γ′, t′ σ′,Γ′, t′ ⃗⇓σ′′,Γ′′, t′′

σ,Γ, t ⃗⇓σ′′,Γ′′, t′′

20 / 23

Towards an Imperative Dialectica

Big-step Operational semantics of LOOPD

Forward OS: s, C ⇓⃗ s′, σ,Γ Backward OS: σ,Γ, t ⃗⇓σ′,Γ′, t′

Theorem (Forward+Backward OS = Backpropagation in LOOPD)
Suppose that WE-HAω ⊢ ∀s(ϕ(s) → C+s ≺ s) for all while ϕ do C of LOOPD.
Then for any s : S there exist σ : S∗ and Γ : (S → T → T)∗ such that

1

s, C ⇓⃗ (C+s), σ,Γ

2 for any t : T , ρ : S∗ and ∆ : (S → T → T)∗,

σ :: ρ ,Γ :: ∆ , t ⃗⇓ ρ,∆, (C−st).

Dialectica implements Automatic Differentiation: discovered by Kerjean and
Pédrot!

21 / 23

Conclusions

1 Dialectica: overview

2 Dialectica Hoare Logic

3 Classical logic: Dialectica ◦ ¬¬

4 Towards an Imperative Dialectica

5 Conclusions

22 / 23

Conclusions

Variable allocation? Concurrency? More?

Think of S and T as partial HEAP → N in WE-HAω.
Then we should/would be able to have a variable allocation Hoare rule...
The following rule is admissible in DHL:

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∧ P2 ⟨a, b |α, β⟩ Q1 ∧Q2

Here, a, α and b, β operate in parallel on disjoint variables. So frame rule!

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∗ P2 ⟨a, α⟩ || ⟨b, β⟩ Q1 ∗Q2

Dialectica for Bunched/Separation Logic ? Don’t know !
Proof-miners make quantitative results out of qualitative standard maths
ones. The algorithmic idea is often by trial-and-error. Like our
while ϕ do a. Make this formal?
Libraries for Proof-Assistants Dialectica realisers extraction?

Thank you, Merci, Grazie!

23 / 23

Conclusions

Variable allocation? Concurrency? More?
Think of S and T as partial HEAP → N in WE-HAω.
Then we should/would be able to have a variable allocation Hoare rule...

The following rule is admissible in DHL:

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∧ P2 ⟨a, b |α, β⟩ Q1 ∧Q2

Here, a, α and b, β operate in parallel on disjoint variables. So frame rule!

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∗ P2 ⟨a, α⟩ || ⟨b, β⟩ Q1 ∗Q2

Dialectica for Bunched/Separation Logic ? Don’t know !
Proof-miners make quantitative results out of qualitative standard maths
ones. The algorithmic idea is often by trial-and-error. Like our
while ϕ do a. Make this formal?
Libraries for Proof-Assistants Dialectica realisers extraction?

Thank you, Merci, Grazie!

23 / 23

Conclusions

Variable allocation? Concurrency? More?
Think of S and T as partial HEAP → N in WE-HAω.
Then we should/would be able to have a variable allocation Hoare rule...
The following rule is admissible in DHL:

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∧ P2 ⟨a, b |α, β⟩ Q1 ∧Q2

Here, a, α and b, β operate in parallel on disjoint variables. So frame rule!

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∗ P2 ⟨a, α⟩ || ⟨b, β⟩ Q1 ∗Q2

Dialectica for Bunched/Separation Logic ? Don’t know !

Proof-miners make quantitative results out of qualitative standard maths
ones. The algorithmic idea is often by trial-and-error. Like our
while ϕ do a. Make this formal?
Libraries for Proof-Assistants Dialectica realisers extraction?

Thank you, Merci, Grazie!

23 / 23

Conclusions

Variable allocation? Concurrency? More?
Think of S and T as partial HEAP → N in WE-HAω.
Then we should/would be able to have a variable allocation Hoare rule...
The following rule is admissible in DHL:

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∧ P2 ⟨a, b |α, β⟩ Q1 ∧Q2

Here, a, α and b, β operate in parallel on disjoint variables. So frame rule!

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∗ P2 ⟨a, α⟩ || ⟨b, β⟩ Q1 ∗Q2

Dialectica for Bunched/Separation Logic ? Don’t know !
Proof-miners make quantitative results out of qualitative standard maths
ones. The algorithmic idea is often by trial-and-error. Like our
while ϕ do a. Make this formal?

Libraries for Proof-Assistants Dialectica realisers extraction?

Thank you, Merci, Grazie!

23 / 23

Conclusions

Variable allocation? Concurrency? More?
Think of S and T as partial HEAP → N in WE-HAω.
Then we should/would be able to have a variable allocation Hoare rule...
The following rule is admissible in DHL:

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∧ P2 ⟨a, b |α, β⟩ Q1 ∧Q2

Here, a, α and b, β operate in parallel on disjoint variables. So frame rule!

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∗ P2 ⟨a, α⟩ || ⟨b, β⟩ Q1 ∗Q2

Dialectica for Bunched/Separation Logic ? Don’t know !
Proof-miners make quantitative results out of qualitative standard maths
ones. The algorithmic idea is often by trial-and-error. Like our
while ϕ do a. Make this formal?
Libraries for Proof-Assistants Dialectica realisers extraction?

Thank you, Merci, Grazie!

23 / 23

Conclusions

Variable allocation? Concurrency? More?
Think of S and T as partial HEAP → N in WE-HAω.
Then we should/would be able to have a variable allocation Hoare rule...
The following rule is admissible in DHL:

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∧ P2 ⟨a, b |α, β⟩ Q1 ∧Q2

Here, a, α and b, β operate in parallel on disjoint variables. So frame rule!

P1 ⟨a |α⟩Q1 P2 ⟨b |β⟩Q2

P1 ∗ P2 ⟨a, α⟩ || ⟨b, β⟩ Q1 ∗Q2

Dialectica for Bunched/Separation Logic ? Don’t know !
Proof-miners make quantitative results out of qualitative standard maths
ones. The algorithmic idea is often by trial-and-error. Like our
while ϕ do a. Make this formal?
Libraries for Proof-Assistants Dialectica realisers extraction?

Thank you, Merci, Grazie!
23 / 23

	orangeDialectica: overview
	How proof/program theorists like it
	How proof miners like it
	How ``realisabilitists'' like it (?)

	orangeDialectica Hoare Logic
	DHL rules
	Adding the While to Gödel

	orangeClassical logic: Dialectica
	A minimum principle

	orangeTowards an Imperative Dialectica
	orangeConclusions

