Towards a resource based approximation theory of programs Soutenance de thèse de Davide Barbarossa barbarossa@lipn.univ-paris13.fr https://lipn.univ-paris13.fr/~barbarossa/ Laboratoire d'Informatique Paris-Nord, Université Sorbonne Paris Nord Dipartimento di matematica e fisica, Università Roma Tre Encadrants: Giulio Manzonetto Lorenzo Tortora de Falco Me: "What is a proof?" $$\operatorname{\mathsf{Me}}:$$ "What is a proof?" BHK/Curry-Howard/Realizability: "A program!" $$\operatorname{\mathsf{Me}}:$$ "What is a proof?" BHK/Curry-Howard/Realizability: "A program!" We can go even deeper (see Girard)... but this is another story $$\operatorname{\mathsf{Me}}:$$ "What is a proof?" BHK/Curry-Howard/Realizability: "A program!" We can go even deeper (see Girard)... but this is another story $$\frac{\pi:A\vdash B}{\vdash A\to B} \quad \rho:\vdash A \\ \vdash B \quad \longrightarrow \quad \pi\{\rho/\overline{A\vdash A}\}:\vdash B$$ $$\frac{\frac{\pi:A^{\mathsf{x}}\vdash B}{\lambda x.\pi:\vdash A\to B} \quad \rho:\vdash A}{(\lambda x.\pi)\rho:\vdash B} \operatorname{cut} \longrightarrow \pi\{\rho/x\}:\vdash B$$ $$\frac{\frac{\pi:A^{\times}\vdash B}{\lambda x.\pi:\vdash A\to B} \quad \rho:\vdash A}{(\lambda x.\pi)\rho:\vdash B} cut \longrightarrow \pi\{\rho/x\}:\vdash B$$ This is not Turing-complete! $$\frac{\frac{\pi:A^{x}\vdash B}{\lambda x.\pi:\vdash A\to B} \quad \rho:\vdash A}{(\lambda x.\pi)\rho:\vdash B}cut \longrightarrow \pi\{\rho/x\}:\vdash B$$ This is not Turing-complete! What's the underlying untyped programming language? $$\frac{\frac{\pi:A^{\times}\vdash B}{\lambda x.\pi:\vdash A\to B} \quad \rho:\vdash A}{(\lambda x.\pi)\rho:\vdash B} cut \longrightarrow \pi\{\rho/x\}:\vdash B$$ This is not Turing-complete! What's the underlying untyped programming language? #### λ -calculus $$M ::= x$$ (datas or place holders) $| \lambda x.M$ (function of the variable x given by the "law" M) $| MM$ (function application) $(\lambda x.M)N \longrightarrow_{\lambda} M\{N/x\}$ $$\frac{\pi: A^{\mathsf{x}} \vdash B}{\frac{\lambda x. \pi: \vdash A \to B}{(\lambda x. \pi)\rho: \vdash B}} \quad \rho: \vdash A \\ \cot \quad \longrightarrow \quad \pi\{\rho/x\}: \vdash B$$ This is not Turing-complete! What's the underlying untyped programming language? ``` \lambda-calculus This is Turing-complete! M := x (datas or place holders) |\lambda x.M| (function of the variable x given by the "law" M) |MM| (function application) (\lambda x.M)N \longrightarrow_{\lambda} M\{N/x\} ``` $(\lambda x. \operatorname{add} 17 (\operatorname{multiply} x x)) 5$ $(\lambda x. \text{ add } 17 (\text{multiply } xx)) 5$ $(\lambda x. \text{ add } 17 (\text{multiply } x x)) 5$ $(\lambda x. \text{ add } 17 (\text{multiply } \times \times)) 5$ $(\lambda x. \text{ add } 17 \text{ (multiply } x | x)) 5 \longrightarrow_{\lambda} \text{ add } 17 \text{ (multiply } 5 | 5)$ $(\lambda x. \text{ add } 17 \text{ (multiply } x \text{ } x)) 5 \longrightarrow_{\lambda} \text{ add } 17 \text{ (multiply } 5 \text{ } 5)$ (= 42) $$(\lambda x. \text{ add } 17 \text{ (multiply } x \text{ } x)) 5 \longrightarrow_{\lambda} \text{ add } 17 \text{ (multiply } 5 \text{ } 5)$$ (= 42) $(\lambda x. \operatorname{add} 17 (\operatorname{multiply} x x)) 5 \longrightarrow_{\lambda} \operatorname{add} 17 (\operatorname{multiply} 55)$ ``` \begin{array}{l} \left(\lambda x.\,\mathrm{add}\,17\,\big(\mathrm{multiply}\,x\,x\big)\big)\,5\,\longrightarrow_{\lambda}\,\mathrm{add}\,17\,\big(\mathrm{multiply}\,5\,5\big)\\ \left(\lambda x.\,\mathrm{add}\,[17]\,\big[\mathrm{multiply}\,[x]\,[x]]\big)\,[5,5]\,\longrightarrow_{\lambda}\,\mathrm{add}\,[17]\,\big[\mathrm{multiply}\,[5]\,[5]] \end{array} ``` ``` \begin{array}{l} (\lambda x. \operatorname{add} 17 \left(\operatorname{multiply} x x\right)) \, 5 \longrightarrow_{\lambda} \operatorname{add} 17 \left(\operatorname{multiply} 5 \, 5\right) \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]) \left[5, 5\right] \longrightarrow_{\lambda} \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[5\right] \left[5\right]\right] \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]) \left[5, 5, 5\right] \longrightarrow_{\lambda} \operatorname{error} \end{array} ``` ``` \begin{array}{l} (\lambda x. \operatorname{add} 17 \left(\operatorname{multiply} x x\right)) \, 5 \longrightarrow_{\lambda} \operatorname{add} 17 \left(\operatorname{multiply} 5 \, 5\right) \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]\right) \left[5, 5\right] \longrightarrow_{\lambda} \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[5\right] \left[5\right]\right] \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]\right) \left[5, 5, 5\right] \longrightarrow_{\lambda} \operatorname{error} \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]\right) \left[\right] \longrightarrow_{\lambda} \operatorname{error} \end{array} ``` ``` \begin{array}{l} (\lambda x. \operatorname{add} 17 \left(\operatorname{multiply} x x\right)) \, 5 \longrightarrow_{\lambda} \operatorname{add} 17 \left(\operatorname{multiply} 5 \, 5\right) \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]\right) \left[5, 5\right] \longrightarrow_{\lambda} \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[5\right] \left[5\right]\right] \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]\right) \left[5, 5, 5\right] \longrightarrow_{\lambda} \operatorname{error} \\ (\lambda x. \operatorname{add} \left[17\right] \left[\operatorname{multiply} \left[x\right] \left[x\right]\right]\right) \left[\right] \longrightarrow_{\lambda} \operatorname{error} \end{array} ``` #### Resource λ -calculus $$t ::= x \mid \lambda x.t \mid t [t, \ldots, t]$$ ### Qualitative Taylor expansion $$\mathcal{T}(MN) = \{t[u_1, \ldots, u_k] \mid k \in \mathbb{N}, t \in \mathcal{T}(M), u_1, \ldots, u_k \in \mathcal{T}(N)\}$$ #### Resource λ -calculus $$t ::= x \mid \lambda x.t \mid t [t, \ldots, t]$$ #### Qualitative Taylor expansion $$\mathcal{T}(MN) = \{t[u_1, \ldots, u_k] \mid k \in \mathbb{N}, t \in \mathcal{T}(M), u_1, \ldots, u_k \in \mathcal{T}(N)\}$$ Someone said Taylor?! $$\Theta(F)(x) = \sum_{n} \frac{1}{n!} (\mathbb{D}^{(n)} F \cdot x^n)(0)$$ with $(\mathbb{D}^{(n)} F \cdot a)(y) := \frac{d^n F}{dx^n}(y) \cdot a$ ### Quantitative Taylor expansion $$\Theta(M) := \sum_{t \in \mathcal{T}(M)} \frac{1}{\mathrm{m}(t)} t$$ $$\Theta(Fx) = \Theta(F) \sum_{n=1}^{\infty} \frac{1}{n!} x^n = \sum_{n=1}^{\infty} \frac{1}{n!} (D^{(n)}\Theta(F) \bullet x^n) 0$$ #### Reduction: $$(\lambda x.t)[s_1,s_2,s_3] o$$? #### Reduction: $$(\lambda x.t)[s_1, s_2, s_3] \to t\{s_1/x^{(1)}, s_2/x^{(2)}, s_3/x^{(3)}\}$$ $$(\lambda x.t)[\underline{s}_1,\underline{s}_2,\underline{s}_3] \to \sum_{\sigma \in \mathfrak{S}_3} t\{\underline{s}_{\sigma(1)}/x^{(1)},\underline{s}_{\sigma(2)}/x^{(2)},\underline{s}_{\sigma(3)}/x^{(3)}\}$$ $$(\lambda x.t)[s_1, s_2, s_3] \rightarrow$$? $$(\lambda x.t)[s_1, s_2, s_3] \rightarrow 0$$ $$[s_1, s_2, s_3] \longrightarrow 0$$ ### Main Properties • Linearity: no erase/duplicate non-empty bags (unless -> 0). $\bullet \ \, {\sf Strong \ Normalisation:} \qquad \qquad {\sf trivial, \ erases \ exactly \ one \ } \lambda.$ ullet Confluence: locally confluent + strongly normalising. # Böhm trees (Barendregt, '70s) If M is unsolvable then $\mathrm{BT}(M) := \bot$. If $M \twoheadrightarrow_{\mathrm{h}} \lambda \vec{x}.y \ Q_1 \ldots Q_k$ then: $$\operatorname{BT}(M) := \lambda \vec{x}. y$$ $\operatorname{BT}(Q_1) \cdots \operatorname{BT}(Q_k)$ Coinduction! Set \mathcal{A} of Böhm approximants: $P ::= \bot \mid \lambda \vec{x}.y P \dots P$ \mathcal{A} is endowed with a preorder \sqsubseteq generated by taking $\bot \sqsubseteq P$ for all PSet $\mathcal{A}(M)$ of the Böhm approximants of $M \in \Lambda$: $$\mathcal{A}(M) := \{ P \in \mathcal{A} \mid \exists N \in \Lambda \text{ s.t. } M \twoheadrightarrow_{\lambda} N \supseteq P \}$$ ### Approximation Theorem $$BT(M) = \sup_{P \in \mathcal{A}(M)} P$$ # Böhm trees (Barendregt, '70s) If M is unsolvable then $BT(M) := \bot$. If $M \to_h \lambda \vec{x}.y Q_1 \ldots Q_k$ then: $$\operatorname{BT}(M) := \lambda \vec{x}.y$$ $$\operatorname{BT}(Q_1) \cdots \operatorname{BT}(Q_n)$$ Coinduction! $BT(Q_1) \cdots BT(Q_k)$ Understanding the relation between the term and its Set \mathcal{A} of full Taylor expansion might be the starting point of a renewing of the theory of approximations. ${\cal A}$ is endo T. Ehrhard, L. Regnier ('03) Set $\mathcal{A}(M)$ The differential lambda-calculus $$\mathcal{A}(M) := \{ P \in \mathcal{A} \mid \exists N \in \Lambda \text{ s.t. } M \twoheadrightarrow_{\lambda} N \sqsupseteq P \}$$ ### Approximation Theorem $$BT(M) = \sup_{P \in A(M)} F$$ ### Classic results via labelled reduction ### Classic results via Resource Approximation ### Unsolvables are computationally meaningless ### Genericity Property Let U unsolvable. If $\exists \operatorname{nf}(C(U))$, then C is constant on $\Lambda/_{=_{\lambda}}$. #### **Genericity Property** Let *U* unsolvable. If $\exists \operatorname{nf}(C(U))$, then *C* is constant on $\Lambda/_{=_{\lambda}}$. **Proof.** C(U) normalisable $\Rightarrow \exists t \in NF(T(C(U)))$ such that: "nf $_{\beta}(C(U)) = t$ " and all its bags are singletons. So $\exists t' \in \mathcal{T}(C(U))$ such that: $$t' = c(s_1, \ldots, s_k) \longrightarrow t + \mathbb{T}$$ for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$. #### Genericity Property Let *U* unsolvable. If $\exists \operatorname{nf}(C(U))$, then *C* is constant on $\Lambda/_{=_{\lambda}}$. **Proof.** C(U) normalisable $\Rightarrow \exists t \in NF(T(C(U)))$ such that: "nf $_{\beta}(C(U)) = t$ " and all its bags are singletons. So $\exists t' \in \mathcal{T}(C(U))$ such that: $$t' = c(s_1, \ldots, s_k) \xrightarrow{\hspace{1cm}} t + \mathbb{T}$$ $$\downarrow \qquad \qquad \downarrow \qquad$$ for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$. #### Genericity Property Let U unsolvable. If $\exists \operatorname{nf}(C(U))$, then C is constant on $\Lambda/_{=_{\lambda}}$. **Proof.** C(U) normalisable $\Rightarrow \exists t \in NF(T(C(U)))$ such that: "nf $_{\beta}(C(U)) = t$ " and all its bags are singletons. So $\exists t' \in \mathcal{T}(C(U))$ such that: $$t' = c(s_1, \ldots, s_k) \xrightarrow{\longrightarrow} t + \mathbb{T}$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$ for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$. $(U \text{ unsolvable } \Rightarrow \text{nf}(s_i) = 0)$ #### **Genericity Property** Let *U* unsolvable. If $\exists \operatorname{nf}(C(U))$, then *C* is constant on $\Lambda/_{=_{\lambda}}$. **Proof.** C(U) normalisable $\Rightarrow \exists t \in NF(T(C(U)))$ such that: "nf $_{\beta}(C(U)) = t$ " and all its bags are singletons. So $\exists t' \in \mathcal{T}(C(U))$ such that: $$t' = c(s_1, \ldots, s_k) \xrightarrow{\qquad} t + \mathbb{T}$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$ for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$. #### Genericity Property Let *U* unsolvable. If $\exists \inf(C(U))$, then *C* is constant on $\Lambda/_{=_{\lambda}}$. **Proof.** C(U) normalisable $\Rightarrow \exists t \in NF(T(C(U)))$ such that: "nf $_{\beta}(C(U)) = t$ " and all its bags are singletons. So $\exists t' \in \mathcal{T}(C(U))$ such that: $$t' = c(s_1, \dots, s_k) \xrightarrow{\qquad} t + \mathbb{T}$$ $$0 \neq c(0, \dots, 0)$$ for some $c \in \mathcal{T}(C(\cdot))$ and $s_1, \ldots, s_k \in \mathcal{T}(U)$. No hole can occur in *c*! Therefore: $t' = c(s_1, \ldots, s_k) = c \in \mathcal{T}(C(M))$ and hence $t \in NF(\mathcal{T}(C(M)))$. Since all bags of t are singletons, " $t = \inf_{\beta} (C(M))$ ". ## Perpendicular Lines Property PLP: If $\lambda \vec{z}.F : \Lambda \times \cdots \times \Lambda \to \Lambda$ is constant (mod ...) on n perpendicular lines, then it must be constant (mod ...) everywhere. ## Perpendicular Lines Property PLP: If $\lambda \vec{z}.F : \Lambda \times \cdots \times \Lambda \to \Lambda$ is constant (mod ...) on n perpendicular lines, then it must be constant (mod ...) everywhere. True in $\Lambda/_{=_{\mathcal{B}}}$, Barendregt's Book 1984 Proof: via Sequentiality. in $$\Lambda^o/_{=_{\mathcal{B}}}$$ False in $\Lambda^o/_{=_{\lambda}}$, Barendregt & Statman 1999 Counterexample: via Plotkin's terms. True in $\Lambda/_{=_{\lambda}}$, De Vrijer & Endrullis 2008 Proof: via Reduction under Substitution. #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \ \dots \dots M_{1n} &=_{\mathcal{B}} \ N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \ \dots \dots M_{2n} &=_{\mathcal{B}} \ N_2 \\ & \ddots & \vdots & \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \ \dots M_{n(n-1)} \ Z &=_{\mathcal{B}} \ N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\mathcal{B}} \ N_1.$$ #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \ \dots \dots M_{1n} &=_{\mathcal{B}} \ N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \ \dots \dots M_{2n} &=_{\mathcal{B}} \ N_2 \\ & \ddots & \vdots & \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \ \dots M_{n(n-1)} \ Z &=_{\mathcal{B}} \ N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\mathcal{B}} \ N_1.$$ How can $BT((\lambda z.F)N)$ be independent from N? - N is erased during the reduction; - N is "hidden" behind an unsolvable; - N is "pushed to infinity". #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \ \dots \dots M_{1n} & =_{\tau} \ N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \ \dots \dots M_{2n} & =_{\tau} \ N_2 \\ & \ddots & \vdots & \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \ \dots M_{n(n-1)} \ Z & =_{\tau} \ N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\tau} \ N_1.$$ - **1** $(\lambda z.t)b \rightarrow 0$ for all b, i.e. $t \rightarrow 0$; - b is erased during the reduction; - b is "hidden" behind an unsolvable; - b is "pushed to infinity". #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \ \dots \dots M_{1n} &=_{\tau} \ N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \ \dots \dots M_{2n} &=_{\tau} \ N_2 \\ & \ddots & \vdots & \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \ \dots M_{n(n-1)} \ Z &=_{\tau} \ N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\tau} \ N_1.$$ - **1** $(\lambda z.t)b \rightarrow 0$ for all b, i.e. $t \rightarrow 0$; - b is erased during the reduction; - b is "hidden" behind an unsolvable (no unsolvables); - b is "pushed to infinity". #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \ \dots \dots \ M_{1n} & =_{\tau} \ N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \ \dots \dots \ M_{2n} & =_{\tau} \ N_2 \\ & \ddots & \vdots \ \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \ \dots \ M_{n(n-1)} \ Z & =_{\tau} \ N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\tau} \ N_1.$$ - **1** $(\lambda z.t)b \rightarrow 0$ for all b, i.e. $t \rightarrow 0$; - b is erased during the reduction; - b is "hidden" behind an unsolvable (no unsolvables); - b is "pushed to infinity" (SN). #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \ \dots \dots \ M_{1n} & =_{\tau} \ N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \ \dots \dots \ M_{2n} & =_{\tau} \ N_2 \\ & \ddots & \vdots \ \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \ \dots \ M_{n(n-1)} \ Z & =_{\tau} \ N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\tau} \ N_1.$$ - **1** $(\lambda z.t)b \rightarrow 0$ for all b, i.e. $t \rightarrow 0$; - ② b = [] is erased during the reduction (linearity); - b is "hidden" behind an unsolvable (no unsolvables); - b is "pushed to infinity" (SN). #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \dots M_{1n} & =_{\tau} & N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \dots M_{2n} & =_{\tau} & N_2 \\ & \ddots & \vdots & \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \dots M_{n(n-1)} \ Z & =_{\tau} & N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\tau} N_1.$$ #### Lemma Under the assuption above, if $t \in \mathcal{T}(F)$ then: $$nf(t) \neq 0 \Rightarrow \vec{z} \notin t.$$ By induction on the size of c. | PLP | $ =_{\lambda}$ | $=_{\mathcal{B}}$ | |--------|----------------|-------------------| | open | √ | √ | | closed | Х | ? | #### Perpendicular Lines Property $$\forall Z \begin{cases} (\lambda \vec{z}.F) \ Z \ M_{12} \ \dots \dots M_{1n} &=_{\tau} \ N_1 \\ (\lambda \vec{z}.F) \ M_{21} \ Z \ \dots \dots M_{2n} &=_{\tau} \ N_2 \\ & \ddots & \vdots & \vdots \\ (\lambda \vec{z}.F) \ M_{n1} \ \dots M_{n(n-1)} \ Z &=_{\tau} \ N_n \end{cases} \Rightarrow \forall \vec{Z}, \ (\lambda \vec{z}.F) \vec{Z} =_{\tau} N_1.$$ #### Our proof does not need open terms! PLP holds in $\Lambda^o/_{=\kappa}$ | PLP | $ =_{\lambda}$ | $=_{\mathcal{B}}$ | |--------|----------------|-------------------| | open | \checkmark | \checkmark | | closed | X | ✓ | # The $\lambda\mu$ -calculus (Parigot '92) #### Terms ## $M ::= x \mid \lambda x.M \mid MM \mid \mu \alpha._{\beta} |M|$ #### Reduction $$(\lambda x.M)N \rightarrow_{\lambda} M\{N/x\}$$ $$\mu\alpha._{\beta}|\mu\gamma._{\eta}|M|| \rightarrow_{\rho} \mu\alpha._{\eta}|M|\{\beta/\gamma\}$$ $$(\mu\alpha._{\beta}|M|)N \rightarrow_{\mu} \mu\alpha.(_{\beta}|M|)_{\alpha}N$$ #### Impure functional programming lang: #### Continuations $$\mathtt{callcc} := \lambda y.\mu\alpha._{\alpha}|y(\lambda x.\mu\delta._{\alpha}|x|)|$$ #### Classical logic: $$t ::= x \mid \lambda x.t \mid t[t, \ldots, t] \mid \mu \alpha.\beta \mid t \mid$$ Define the set $\lambda \mu^{\rm r}$ of resource $\lambda \mu$ -terms: $$t ::= x \mid \lambda x.t \mid t[t, \ldots, t] \mid \mu \alpha.\beta |t|$$ Reduction: $(\lambda x.t)[\vec{s}] \rightarrow_{\lambda} t\langle [\vec{s}]/x\rangle$ $$t ::= x \mid \lambda x.t \mid t[t, \ldots, t] \mid \mu \alpha.\beta |t|$$ Reduction: $$(\lambda x.t)[\vec{s}] \to_{\lambda} t\langle [\vec{s}]/x \rangle$$ $\mu \alpha._{\beta} |\mu \gamma._{\eta}|t|| \to_{\rho} \mu \alpha._{\eta} |t| \{\beta/\gamma\}$ $$t ::= x \mid \lambda x.t \mid t [t, \dots, t] \mid \mu \alpha._{\beta} | t |$$ $$\text{Reduction: } (\lambda x.t) [\vec{s}] \rightarrow_{\lambda} t \langle [\vec{s}]/x \rangle \qquad \mu \alpha._{\beta} | \mu \gamma._{\eta} | t | | \rightarrow_{\rho} \mu \alpha._{\eta} | t | \{\beta/\gamma\} \}$$ $$(\mu \alpha._{\beta} | t |) [\vec{s}] \rightarrow_{\mu} ?$$ $$\begin{aligned} t &::= \ x \ | \ \lambda x.t \ | \ t \left[t, \ldots, t\right] \ | \ \mu \alpha._{\beta} |t| \end{aligned}$$ Reduction: $(\lambda x.t)[\vec{s}] \to_{\lambda} t \langle [\vec{s}]/x \rangle \qquad \mu \alpha._{\beta} |\mu \gamma._{\eta}|t|| \to_{\rho} \mu \alpha._{\eta} |t| \{\beta/\gamma\}$ $$(\mu \alpha._{\beta} |t|)[\vec{s}] \to_{\mu} \mu \alpha._{\beta} |t| \{\ldots, \alpha |(\cdot)b_{i}|/_{\alpha^{|\cdot|(i)}}, \ldots \}$$ $$t ::= x \mid \lambda x.t \mid t[t, \dots, t] \mid \mu \alpha._{\beta} |t|$$ $$\text{Reduction: } (\lambda x.t)[\vec{s}\,] \to_{\lambda} t \langle [\vec{s}\,]/x \rangle \qquad \mu \alpha._{\beta} |\mu \gamma._{\eta}|t|| \to_{\rho} \mu \alpha._{\eta} |t| \{\beta/\gamma\}$$ $$(\mu\alpha_{\cdot\beta}|t|)[\vec{s}] \to_{\mu} \sum_{b_1*\dots*b_k=[\vec{s}]} \mu\alpha_{\cdot\beta}|t| \{\dots, \alpha|(\cdot)b_i|/_{\alpha|\cdot|(i)},\dots\}$$ Define the set $\lambda \mu^{\rm r}$ of resource $\lambda \mu$ -terms: $$t ::= x \mid \lambda x.t \mid t[t, \dots, t] \mid \mu \alpha._{\beta} |t|$$ $$\text{Reduction: } (\lambda x.t)[\vec{s}\,] \to_{\lambda} t \langle [\vec{s}\,]/x \rangle \qquad \mu \alpha._{\beta} |\mu \gamma._{\eta}|t|| \to_{\rho} \mu \alpha._{\eta} |t| \{\beta/\gamma\}$$ $$(\mu\alpha_{\cdot\beta}|t|)[\vec{s}] \to_{\mu} \sum_{b_1*\dots*b_k=[\vec{s}]} \mu\alpha_{\cdot\beta}|t| \{\dots, \alpha|(\cdot)b_i|/_{\alpha|\cdot|(i)},\dots\}$$ Strong normalisation: Not immediate, multiset order #### Confluence - Add coefficients: gain contextuality of reduction on sums - Prove confluence in the setting with coefficients - Show that this entails the confluence of the calculus without coefficients ## Qualitative Taylor expansion Same definition, plus: $\mathcal{T}(\mu\alpha._{\beta}|M|) := \{\mu\alpha._{\beta}|t| \mid t \in \mathcal{T}(M)\}.$ #### Simulation property If $M \rightarrow N$ then: - for all $s \in \mathcal{T}(M)$ there is $\mathbb{T} \subseteq \mathcal{T}(N)$ s.t. $s \twoheadrightarrow \mathbb{T}$ - for all $s' \in \mathcal{T}(N)$ there is $s \in \mathcal{T}(M)$ s.t. $s \twoheadrightarrow s' + something$ #### Non-interference property Let $t, s \in \mathcal{T}(M)$. Then: $\operatorname{nf}(t) \cap \operatorname{nf}(s) \neq \emptyset \Rightarrow t = s$. #### Main results - The equivalence equating $NF(\mathcal{T}(\cdot))$'s is a sensible $\lambda\mu$ -theory. - PLP and Stability hold in $\lambda \mu$ -calculus (thus also $\nexists por$). #### Conclusions - Resource approximation (Taylor expansion) is a powerful tool for studying the properties of the language - Replaces coinductive arguments by inductive ones - It adapts to other programming languages - Böhm trees for $\lambda\mu$ -calculus? - What about Saurin's $\Lambda\mu$ -calculus? - What is an approximation of a program? #### For more, see the thesis! - Call-by-value - Homology and proofs - Philosophy