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(Quantitative) Semantics of Programs

Program semantics

=  properties of programs
Qualitative:

e termination

e correctness

Quantitative:
e probability of convergence
e probability of correctness
e program equivalence
° .

e errors, program similarity
o ...
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(Quantitative) Semantics of Programs
Sensitivity Analysis
program metrics, quantitative

Resource Analysis
equational theories

linear logic, program differentiation,
intersection types
type — metric space vector space
YP p type s p
/module
o Lipschitz oeTamlL s smooth /analytic
program function Prog function
€ € — o 1
M&EN= FM X FN FM = 3
Metric Preservation

n=0 In

D" [F, M™](0)

Taylor Formula
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(Quantitative) Semantics of Programs

A-calculus (Purely functional, Turing—complete)
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(\z.M)N — M{z := N}
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(Quantitative) Semantics of Programs
A-calculus (Purely functional, Turing—complete)
M=z | Xx.N|MN

(Az.M)N — M{z := N}

z:A+-M:B
rz:AFx: A

Simple types (Lose Turing-completeness, can be recovered easily)
FAXe.M:A— B

FM:A—-B +FN:A
FMN:B

Categorical semantics in a Cartesian Closed Category C
type A

=

object [A] in C

[m] = =

program x: A- M :B +—  morphism [z: AF M :B]:[A] = [B] inC
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Sensitivity
Analysis

F' uses input

f non-expansive
once

M~N=FM~FN
F' uses input

f k-Lipschitz
k times
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Analysis

f linear (D*F = 0)
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Quantitative Semantics: Linearity

Sensitivity Resource
Analysis Analysis
F uses input  f non-expansive f linear (D*F = 0)
once
M&N=FM=FN FM = (DF-M)0
k times .
MEAN=FME PN FM =Y, D" [FM"(0)
graded types

intersection types
'kA—OB [Al,...,Ak]—oB

5 =

[m]
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Quantitative Semantics: Linearity

Graded typed calculus

Resource calculus
zWAF2: A

z:[AlFz: A
z:)CHFM:\,A—-oB z:!!,CFN:A
T dsrnumCHMN : B

x:[Ay,---A)FM: B
FAz.M:[Ay,---A,] — B
z:\,AFM:B

FAe.M:,A—B

FM:[A, ---A,] - B

(I— Nl : Ai)?:l
F M[Ny,---N,]: B
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Quantitative Semantics: Linearity

Resource \-calculus

tu=u1x| Az

E| o [t

1

syntactic sugar for D™ [to; t1,

o)

.5 ta](0)
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Quantitative Semantics: Linearity

Resource \-calculus

ti==x | Ax.t | to [tl,...,tn]
syntactic sugar for D [to;t1, . .., £,](0)
Taylor expansion of a A\-term
T(x) = {x}

TOw.M) == { et |t € T(M)}
T(MN):= {t[us,.

Jugp] |ne Nyt € T(M), uy,

LU, € T(N)}
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Quantitative Semantics: a Logarithmic Gap

f k-Lipschitz

f uses input

k times
\

urce analysjs

f k-degree polynomial
e.g. f(r)=a"
Tropical Mathematics

a k-degree polynomial is a k-Lipschitz function!
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Tropical Mathematics in 3 Minutes

Tropical semiring: I = ([0, +-00], min, +)
Tropical polynomial: p : [0, 00] — [0, 00|, e.g.
p(z) = min{2z + 1,z + 3,8}
like e '2? + ¢ %2 + ¢ %, but tropical
xg is a tropical root of p(x) iff p(x) is not differentiable

equivalently, iff the minimum p(x)
is attained twice

3-8 g
8 [~ x+3= ? e
6 |- |
2x+1=x+3

4 |- |
2 |- |

| | | | | |

0 2 4 6 8 10

=} (=) = E E DA
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Tropical Methods in Computer Science

Intractable problems (e.g. root finding, optimization)

tropicalization:
+ +— min
X =+
Combinatorial (and sometimes tractable!) ones
e tropical roots are found in linear time
e likelihood estimation in statistical models

e machine learning (ReLU networks)
e optimal routing paths

PAN G4
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Tropical Methods in Computer Science

f k-Lipschitz

f uses input

k times
e tropical
Source 4y, alyors p

f k-degree polynomial

Tropical Mathematics

a k-degree polynomial is a k-Lipschitz function!
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Tropical Polynomials and Effectful Computation

M ::=True |False | M &, M (p€[0,1]NQ)

M@, N -, M

M@, N -1, N
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Tropical Polynomials and Effectful Computation

(True &, False) @, ((True @, False) @, (False @, True))

Pre(p,q) =p* +p*q+¢*

¢=1-p Hidden Markov Model
Pu(p,q) I Maximum Likelihood problem:
Pu(p,q) = pq supposing M — True,
Pr‘r?‘(pa Q) - q3

what is the most likely path?
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(True &, False) @, ((True @, False) @, (False @, True))

Pre(p,q) =p* +p*q+¢*

Hidden Markov Model
Pu(p,q) = P’ Maximum Likelihood problem:
P(p,q) = pq supposing M — True,
3 what is the most likely path?
Prr?“ (pa Q) =q

— find wo € {ll, rll,rrr} maximizing P(M —», True | M — True):
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(True &, False) @, ((True @, False) @, (False @, True))

Pre(p,q) =p* +p*q+¢*

Hidden Markov Model
Pu(p,q) = P’ Maximum Likelihood problem:
P(p,q) = pq supposing M — True,
3 what is the most likely path?
Prr?“ (pa Q) =q

— find wo € {ll,rll,rrr} minimizing —log P(M —»,, True | M — True):
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(True &, False) @, ((True @, False) @, (False @, True))

Prive(p.q) =0 + P’ + ¢°
r:=—logp, y:=—logq

Py(p.q) = p?

Pu(p,q) = p°q

Hidden Markov Model
Prr(pq) = ¢

Maximum Likelihood problem:
supposing M — True,

what is the most likely path?

— find wo € {ll,rll,rrr} minimizing —log P(M —»,, True | M — True):

—log P, (p, q) = min,{—log P,(p,q)}

[m]

=



Tropical Polynomials and Effectful Computation

(True &, False) @, ((True @, False) @, (False @, True))
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r:=—log p, y:=—logq
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(True &, False) @, ((True @, False) @, (False @, True))

Prve(p, @) = p* +p*q + ¢°
z:=—logp, y:=—loggq

Hidden Markov Model
tPy(z,y) = 2z Maximum Likelihood problem:
tPy(z,y) =22 +y supposing M — True,
Py () = 3y what is the most likely path?
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(True &, False) @, ((True ®, False) @, (False ®, rﬂrue))

z:=—logp, y:=—loggq

t-Pll (LL', y) =2z

tPT”(.’b, y) =2z + Yy
tPrrr(x7 ZJ) =3y

— find wg € {U,rll, rrr} minimizing —log P(M —», True | M — True):

tP, (z,y) = min{2z, 22 + y, 3y}
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(True &, False) @, ((True ®, False) @, (False ®, rﬂrue))

tropical roots + line y = %x
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Tropical Polynomials and Effectful Computation

(True &, False) @, ((True ®, False) @, (False ®, True))

tropical roots + line y = %x

o rrr most likely as soon y < %x

o [l most likely otherwise

— find wg € {U,rll, rrr} minimizing —log P(M —», True | M — True):

tP, (z,y) = min{2z, 22 + y, 3y}
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Tropical Polynomials and Effectful Computation

(True &, False) @, ((True ®, False) @, (False ®, True))

tropical roots +— line y = %x

o rrr most likely as soon 1—p > p%
(egp=1)

o [l most likely otherwise

— find wg € {U,rll, rrr} minimizing —log P(M —», True | M — True):

tP, (z,y) = min{2z, 22 + y, 3y}
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M = fix.(A\z.True &, ) — (Az.True @, z)M — True &, M
M —», True

M —»4 M —», True

p

qap

M —q M —¢ M —», True *p
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M = fix.(A\z.True &, ) — (Az.True @, z)M — True &, M
M -, True
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M = fix.(A\z.True &, ) — (Az.True @, z)M — True &, M

M —, True

M —, M —, True

x
x4y
M —», M —», M —,, True T+ 2y
Pre(p,q) =3 2,200¢" = 12, =1
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M-calculus + Probabilities + Arithmetic + Conditional +

FM:A— A

Ffix.M: A
LRel: the L-Weighted Relational Model
type A

|_)

L-module LI4] with metric d
program z: AFM:B ~—

tropical power series
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Tropically Weighted Relational Semantics of PPCF

FM:A— A
Ffix.M: A

LRel: the L-Weighted Relational Model

M-calculus + Probabilities + Arithmetic + Conditional +

type A —  L-module LI4 with metric d.

tropical power series

program z: A-M:B +— [¢: AFM: B]: LIAl s LIBI

z:AFDM: Bl|(x), = inf M, + pux
[[ 16cs = _inf (Mo + px)

Theorem. For any term M : Nat of PPCF and n € N, [M] € LN and

negative log-probability of (any of) the

vneN, [M],= most likely reduction paths M — n.
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Tropical Taylor = Lipschitz Approximation

OO

FM = ln n[F; M")(0)

J/troplcahzatlon

FM = inf D™W[F; M™](0)

neN

T 9ac
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Tropical Taylor = Lipschitz Approximation

M*](0)

n-Lipschitz function

F'is the limit of more and more sensitive approximations
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o Taylor meets Lipschitz

Taylor expansion 7T (

Theorem. |Lipschitz approximation| For any simply typed term M, its
M

) decomposes [M] as an inf of Lipschitz functions
M f [t
M= _nf. [

e Finiteness: tropical power series collapse to polynomials
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Tropical Taylor = Lipschitz Approximation

o Taylor meets Lipschitz:
Theorem. |Lipschitz approximation| For any simply typed term M, its
Taylor expansion T (M) decomposes [M] as an inf of Lipschitz functions.
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Tropical Taylor = Lipschitz Approximation

o Taylor meets Lipschitz:
Theorem. |Lipschitz approximation| For any simply typed term M, its
Taylor expansion T (M) decomposes [M] as an inf of Lipschitz functions.

[M] = inf U]

e Finiteness: tropical power series collapse to polynomials

Theorem. For any tropical power series f : L*¥ — L and for any € > 0,
the restriction of f to [e, +00]* is a tropical polynomial.

f(@) = infga(e) = min o0 ()

e Tropical semantics beyond LRel:

Theorem. [LMod ~ LCCat is a model of STOAC| The equivalent
categories of L-modules and complete generalized metric spaces form a
model of STOAC which extends the L-weighted relational model.
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What is the relevance of tropical methods in the study of higher-order
programming languages?

e Finiteness: to what extent is tropical semantics finitary?
(i.e. which terms are interpreted by tropical polynomials?)

o Sensitivity analysis meets resource analysis: interpret N-graded types
!nA — B as Lipschitz maps.
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programming languages?

e Finiteness: to what extent is tropical semantics finitary?
(i.e. which terms are interpreted by tropical polynomials?)

o Sensitivity analysis meets resource analysis: interpret N-graded types
l2A — B as Lipschitz maps.

Can we do e.g. Q-graded types? Is there something like a /= operator?

e probabilistic metrics — Kantorovich metric, differential privacy

Explore the tropical metrics in LMod ~ LCCat.

log f(z) —log f(y) < Ld(z,y)

Thank youl
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Theorem. Let f: [0, +00]® — [0, +00] be a tropical power series given
by

flz) = ilelﬁ{n,m +cit
For any € > 0 there exists I. Cg, I such that

f(z) = min{niz + ci} (z € [e, +00]")

Corollary. Let M[p] : Nat be a PPCF term with parametric choice &,,.
Then, for any n € N and € > 0, [M], |, 4] is a tropical polynomial.
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Finiteness in Tropical Semantics

Theorem. Let f: [0, +00]® — [0, +00] be a tropical power series given
by
f(z) = inf{n;x + ¢; }.
i€l

For any € > 0 there exists I. Cg, I such that

f() = min{na + i} (@ € le, +o0l")

Corollary. Let M[p] : Nat be a PPCF term with parametric choice &,,.
Then, for any n € N and € > 0, [M], |, 4] is a tropical polynomial.

— if we can compute the polynomial [M], |, for € small enough,
then we can compute maximum likelihood values for M.
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Lipschitz Meets Taylor

f:LX — LY

f(@)a = nfuex {ﬁa + ,ux}

L+ naturally endowed with the Loo-metric doo(z,y) = sup,cx [Za
Theorem

- ya|‘
o f linear: f, o < oo iff u = [x]

= f is non-expansive: deo(f(z), 9(z)) < doo(z,y)
e f K-duplicating: ﬂ,a < oo iff fu < K

= fis K-Lipschitz: doo(f(), f(y)) < Kdoo(,y)
e otherwise, f is locally Lipschitz

doo (f(), f(y)) < Kod

(z,y) in some open neighborhood of z,y
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Lipschitz Meets Taylor
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o if t € T(M), then [{] is a Lipschitz function;
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Lipschitz Meets Taylor

Theorem. For any simply typed A-term M,
o if t € T(M), then [{] is a Lipschitz function;

o T (M) decomposes [M] as an inf of Lipschitz functions:
M] = inf [¢].
M= st [

Recall that, for M : A — B, [M] is only locally Lipschitz: for any
x € [A], there is some Lipschitz constant L, that holds “around” x.
Can we approximate L;?
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Lipschitz Meets Taylor

Theorem. For any simply typed A-term M,
o if t € T(M), then [t] is a Lipschitz function;
o T (M) decomposes [M] as an inf of Lipschitz functions:

[M] = teiTn(ijM)[[t]L

Recall that, for M : A — B, [M] is only locally Lipschitz: for any
x € [A], there is some Lipschitz constant L, that holds “around” x.
Can we approximate L;?

Corollary. Let M : A — B and N : A. For allt € T(M) and § > 0,

unless [¢t]([N]) # oo, the map [M](x) is M—Lipschitz over the
open ball Bs([N]).
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Tropical Algebra and Generalized Metric Spaces

From LRel to LMod:

¥ is a L-module with “a chosen base” (X)

= LMod: arbitrary L-modules (with idempotent sum) and their
homomorphisms.

LMod is equivalent to LCCat:
e objects are complete generalized metric spaces (X,a: X x X — L)
(a.k.a. L-enriched categories)

e arrows are continuous Il()ll—(?Xl')‘rLllSiV() functions
(a.k.a. L-enriched functors)

Theorem. LMod, ~ LCCat; extends LRel; as a model of the STOAC
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