An overview of (Tropical) Quantitative Semantics and Taylor Expansion for the λ-calculus

Davide Barbarossa

Department of Computer Science
UNIVERSITY OF
BATH

Outline

(1) Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity
(3) Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of $\mathbb{P P C F}$
(5) Overview of our recent results (CSL24 - Barbarossa, Pistone)
(6) Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces

Outline

(1) (Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity
(3) Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of PPCF
(5) Overview of our recent results (CSL24 - Barbarossa, Pistone)

6 Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces

Program semantics \Rightarrow properties of programs

Program semantics \Rightarrow properties of programs

Qualitative:

- termination
- correctness
- program equivalence
-...

Program semantics \Rightarrow properties of programs

Qualitative:

- termination
- correctness
- program equivalence
...

Quantitative:

- probability of convergence
- probability of correctness
- errors, program similarity
- ...

Sensitivity Analysis

program metrics, quantitative equational theories

Sensitivity Analysis

program metrics, quantitative equational theories

Resource Analysis

linear logic, program differentiation, intersection types

Sensitivity Analysis

program metrics, quantitative equational theories

Resource Analysis

linear logic, program differentiation, intersection types
type $\quad \mapsto \quad$ metric space

Lipschitz function

Sensitivity Analysis

program metrics, quantitative equational theories

Resource Analysis

linear logic, program differentiation, intersection types
type $\quad \mapsto \quad$ metric space
program $\mapsto \quad \begin{gathered}\text { Lipschitz } \\ \text { function }\end{gathered}$

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{L \cdot \epsilon}{\sim} F N
$$

Metric Preservation

Sensitivity Analysis

program metrics, quantitative equational theories
type $\quad \mapsto \quad$ metric space

program $\mapsto \quad$| Lipschitz |
| :---: |
| function |

$$
\begin{aligned}
& M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{L \cdot \epsilon}{\simeq} F N \\
& \text { Metric Preservation }
\end{aligned}
$$

Resource Analysis

linear logic, program differentiation, intersection types

type $\quad \mapsto \quad$| vector space |
| :---: |
| $/$ module |

program \mapsto smooth/analytic function

Sensitivity Analysis

 program metrics, quantitative equational theoriestype $\quad \mapsto \quad$ metric space

$$
\begin{array}{clc}
\text { program } & \mapsto & \begin{array}{c}
\text { Lipschitz } \\
\text { function }
\end{array}
\end{array}
$$

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{L \cdot \epsilon}{\simeq} F N
$$

Metric Preservation

Resource Analysis

linear logic, program differentiation, intersection types
type $\quad \mapsto \quad$ vector space
program $\mapsto \quad$ smooth/analytic function

$$
F M=\sum_{n=0}^{\infty} \frac{1}{!n} \mathbf{D}^{n}\left[F, M^{n}\right](0)
$$

Taylor Formula
λ-calculus (Purely functional, Turing-complete)

$$
M::=x|\lambda x . N| M N \quad(\lambda x . M) N \rightarrow M\{x:=N\}
$$

λ-calculus (Purely functional, Turing-complete)

$$
M::=x|\lambda x . N| M N \quad(\lambda x . M) N \rightarrow M\{x:=N\}
$$

Simple types (Lose Turing-completeness, can be recovered easily)

$$
\overline{x: A \vdash x: A} \quad \frac{x: A \vdash M: B}{\vdash \lambda x \cdot M: A \rightarrow B} \quad \frac{\vdash M: A \rightarrow B \quad \vdash N: A}{\vdash M N: B}
$$

λ-calculus (Purely functional, Turing-complete)

$$
M::=x|\lambda x . N| M N \quad(\lambda x . M) N \rightarrow M\{x:=N\}
$$

Simple types (Lose Turing-completeness, can be recovered easily)

$$
\overline{x: A \vdash x: A} \quad \frac{x: A \vdash M: B}{\vdash \lambda x \cdot M: A \rightarrow B} \quad \frac{\vdash M: A \rightarrow B \quad \vdash N: A}{\vdash M N: B}
$$

Categorical semantics in a Cartesian Closed Category \mathcal{C}

$$
\text { type } A \quad \mapsto \quad \text { object } \llbracket A \rrbracket \text { in } \mathcal{C}
$$

$\operatorname{program} x: A \vdash M: B \quad \mapsto \quad$ morphism $\llbracket x: A \vdash M: B \rrbracket: \llbracket A \rrbracket \rightarrow \llbracket B \rrbracket$ in \mathcal{C}

Outline

(1) Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity
(3) Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of PPCF
(5) Overview of our recent results (CSL24 - Barbarossa, Pistone)

6 Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces

Sensitivity Analysis

Resource Analysis

Sensitivity Analysis

Resource Analysis

F uses input once

Sensitivity Analysis

Resource Analysis

F uses input $\quad f$ non-expansive once

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{\epsilon}{\simeq} F N
$$

Sensitivity Analysis

F uses input $\quad f$ non-expansive once

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{\epsilon}{\simeq} F N
$$

Resource Analysis

$$
f \text { linear }\left(\mathrm{D}^{2} F=0\right)
$$

$$
F M=(\mathrm{D} F \cdot M) 0
$$

Sensitivity Analysis

F uses input $\quad f$ non-expansive once

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{\epsilon}{\simeq} F N
$$

$$
F M=(\mathrm{D} F \cdot M) 0
$$

F uses input k times

Sensitivity Analysis

F uses input $\quad f$ non-expansive once

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{\epsilon}{\simeq} F N
$$

$$
F M=(\mathrm{D} F \cdot M) 0
$$

F uses input $\quad f k$-Lipschitz k times

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{k \cdot \epsilon}{\simeq} F N
$$

Sensitivity Analysis

F uses input $\quad f$ non-expansive once

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{\epsilon}{\simeq} F N
$$

F uses input $\quad f k$-Lipschitz k times

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{k \cdot \epsilon}{\simeq} F N
$$

Resource Analysis

f linear $\left(\mathrm{D}^{2} F=0\right)$

$$
F M=(\mathrm{D} F \cdot M) 0
$$

$$
f \text { polynomial }\left(\mathrm{D}^{k+1} F=0\right)
$$

$$
F M=\sum_{n=0}^{k} \frac{1}{!n} \mathrm{D}^{n}\left[F, M^{n}\right](0)
$$

Sensitivity Analysis

F uses input $\quad f$ non-expansive once

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{\epsilon}{\simeq} F N
$$

$$
F M=(\mathrm{D} F \cdot M) 0
$$

F uses inpu
k times

$$
f k \text {-Lipschitz }
$$

f polynomial $\left(\mathrm{D}^{k+1} F=0\right)$

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{k \cdot \epsilon}{\simeq} F N
$$

$$
F M=\sum_{n=0}^{k} \frac{1}{!n} \mathrm{D}^{n}\left[F, M^{n}\right](0)
$$

graded types

$$
!_{k} A \multimap B
$$

Sensitivity Analysis

F uses input $\quad f$ non-expansive once

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{\epsilon}{\simeq} F N
$$

$f k$-Lipschitz

$$
M \stackrel{\epsilon}{\simeq} N \Rightarrow F M \stackrel{k \cdot \epsilon}{\simeq} F N
$$

graded types

$$
!_{k} A \multimap B
$$

Resource Analysis

f linear $\left(\mathrm{D}^{2} F=0\right)$

$$
F M=(\mathrm{D} F \cdot M) 0
$$

f polynomial $\left(\mathrm{D}^{k+1} F=0\right)$

$$
F M=\sum_{n=0}^{k} \frac{1}{!n} \mathrm{D}^{n}\left[F, M^{n}\right](0)
$$

intersection types

$$
\left[A_{1}, \ldots, A_{k}\right] \multimap B
$$

Graded typed calculus

$$
\overline{x:!_{1} A \vdash x: A}
$$

$$
\frac{x:!_{s} C \vdash M:!_{n} A \multimap B \quad x:!_{m} C \vdash N: A}{x:!_{s+n m} C \vdash M N: B} \quad \frac{x:\left[A_{1}, \cdots A_{n}\right] \vdash M: B}{\vdash \lambda x \cdot M:\left[A_{1}, \cdots A_{n}\right] \multimap B}
$$

$$
\frac{x:!_{n} A \vdash M: B}{\vdash \lambda x \cdot M:!_{n} A \multimap B} \quad \frac{\vdash M:\left[A_{1}, \cdots A_{n}\right] \multimap B \quad\left(\vdash N_{i}: A_{i}\right)_{i=1}^{n}}{\vdash M\left[N_{1}, \cdots N_{n}\right]: B}
$$

Resource λ-calculus

$$
t::=x|\lambda x . t| t_{0}\left[t_{1}, \ldots, t_{n}\right]
$$

Resource λ-calculus

$$
\left.t::=x|\lambda x \cdot t| t_{0}\left[t_{1}, \ldots, t_{n}\right]\right]+\underset{\text { syntactic sugar for } \mathrm{D}^{(n)}\left[t_{0} ; t_{1}, \ldots, t_{n}\right](0)}{ }
$$

Resource λ-calculus

$$
t::=x \left\lvert\, \lambda x \cdot \frac{\downarrow \mid t_{0}\left[t_{1}, \ldots, t_{n}\right]}{\downarrow}\right.
$$

syntactic sugar for $\mathrm{D}^{(n)}\left[t_{0} ; t_{1}, \ldots, t_{n}\right](0)$

Taylor expansion of a λ-term

$$
\begin{aligned}
\mathcal{T}(x) & :=\{x\} \\
\mathcal{T}(\lambda x . M) & :=\{\lambda x . t \mid t \in \mathcal{T}(M)\} \\
\mathcal{T}(M N) & :=\left\{t\left[u_{1}, \ldots, u_{n}\right] \mid n \in \mathbb{N}, t \in \mathcal{T}(M), u_{1}, \ldots, u_{n} \in \mathcal{T}(N)\right\}
\end{aligned}
$$

Quantitative Semantics: a Logarithmic Gap

f uses input k times

f uses input
 k times

 $$
\text { e.g. } f(x)=x^{k}
$$

Tropical Mathematics

a k-degree polynomial is a k-Lipschitz function!

$$
\text { Tropical semiring: } \mathbb{L}=([0,+\infty], \min ,+)
$$

Tropical semiring: $\mathbb{L}=([0,+\infty]$, min,+$)$
Tropical polynomial: $p:[0, \infty] \rightarrow[0, \infty]$, e.g.

Tropical semiring: $\mathbb{L}=([0,+\infty]$, min,+$)$
Tropical polynomial: $p:[0, \infty] \rightarrow[0, \infty]$, e.g.
like $e^{-1} x^{2}+e^{-3} x+e^{-8}$, but tropical

Tropical semiring: $\mathbb{L}=([0,+\infty]$, min,+$)$
Tropical polynomial: $p:[0, \infty] \rightarrow[0, \infty]$, e.g.

$$
p(x)=\min \left\{2 x+\underset{\text { like } e^{-1} x^{2}+e^{-3} x+e^{-8}, \text { but tropical }}{\text { lin }}\right.
$$

Tropical semiring: $\mathbb{L}=([0,+\infty]$, min,+$)$
Tropical polynomial: $p:[0, \infty] \rightarrow[0, \infty]$, e.g.

$$
\begin{aligned}
& p(x)= \min \{2 x+ \\
& \quad1, x+3,8\} \\
& \quad \text { like } e^{-1} x^{2}+e^{-3} x+e^{-8}, \text { but tropical }
\end{aligned}
$$

Tropical semiring: $\mathbb{L}=([0,+\infty]$, min,+$)$
Tropical polynomial: $p:[0, \infty] \rightarrow[0, \infty]$, e.g.

$$
p(x)=\min \{2 x+1, x+3,8\}
$$

$$
\text { like } e^{-1} x^{2}+e^{-3} x+e^{-8}, \text { but tropical }
$$

x_{0} is a tropical root of $p(x)$ iff $p\left(x_{0}\right)$ is not differentiable

Tropical semiring: $\mathbb{L}=([0,+\infty]$, min,+$)$
Tropical polynomial: $p:[0, \infty] \rightarrow[0, \infty]$, e.g.

$$
\begin{aligned}
& p(x)=\min \{2 x+1, x+3,8\} \\
& \quad \text { like } e^{-1} x^{2}+e^{-3} x+e^{-8}, \text { but tropical }
\end{aligned}
$$

x_{0} is a tropical root of $p(x)$ iff $p\left(x_{0}\right)$ is not differentiable equivalently, iff the minimum $p\left(x_{0}\right)$
is attained twice

Intractable problems (e.g. root finding, optimization)

Intractable problems (e.g. root finding, optimization)
 tropicalization:
$+\mapsto$ min
$\times \mapsto+$
Combinatorial (and sometimes tractable!) ones

- tropical roots are found in linear time
- likelihood estimation in statistical models
- machine learning (ReLU networks)
- optimal routing paths

f uses input
 k times

 $$
\text { e.g. } f(x)=x^{k}
$$

Tropical Mathematics

a k-degree polynomial is a k-Lipschitz function!

f uses input k times

 $$
\text { e.g. } f(x)=k x
$$

Tropical Mathematics

a k-degree polynomial is a k-Lipschitz function!

Outline

(1) Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity
(3) Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of $\mathbb{P P C F}$
(5) Overview of our recent results (CSL24-Barbarossa, Pistone)

6 Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces

$M::=$ True \mid False $\mid M \oplus_{p} M \quad(p \in[0,1] \cap \mathbb{Q})$

$$
\begin{aligned}
& M \oplus_{p} N \rightarrow_{p} M \\
& M \oplus_{p} N \rightarrow_{1-p} N
\end{aligned}
$$

(True \oplus_{p} False $) \oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

(True \oplus_{p} False $) \oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
q:=1-p
$$

$$
\begin{aligned}
P_{l l}(p, q) & =p^{2} \\
P_{r l l}(p, q) & =p^{2} q \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

(True \oplus_{p} False $) \oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3}
$$

$$
q:=1-p
$$

$$
\begin{aligned}
P_{l l}(p, q) & =p^{2} \\
P_{r l l}(p, q) & =p^{2} q \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3}
$$

$$
q:=1-p
$$

$$
\begin{aligned}
P_{l l}(p, q) & =p^{2} \\
P_{r l l}(p, q) & =p^{2} q \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

Maximum Likelihood problem:
supposing $M \rightarrow$ True, what is the most likely path?
$\left(\right.$ True \oplus_{p} False $) \oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3}
$$

$$
q:=1-p
$$

Hidden Markov Model

$$
\begin{aligned}
P_{l l}(p, q) & =p^{2} \\
P_{r l l}(p, q) & =p^{2} q \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

Maximum Likelihood problem: supposing $M \rightarrow$ True, what is the most likely path?
\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ maximizing $P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $):$

$$
P_{\omega_{0}}(p, q)=\max _{\omega} P_{\omega}(p, q)
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3}
$$

$$
q:=1-p
$$

$$
\begin{aligned}
P_{l l}(p, q) & =p^{2} \\
P_{r l l}(p, q) & =p^{2} q \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

Hidden Markov Model
Maximum Likelihood problem:
supposing $M \rightarrow$ True, what is the most likely path?
\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $):$

$$
-\log P_{\omega_{0}}(p, q)=\min _{\omega}\left\{-\log P_{\omega}(p, q)\right\}
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
\begin{gathered}
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3} \\
x:=-\log p, y:=-\log q \quad \text { Hidden Markov Model }
\end{gathered}
$$

$$
\begin{aligned}
P_{l l}(p, q) & =p^{2} \\
P_{r l l}(p, q) & =p^{2} q \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

Maximum Likelihood problem:
supposing $M \rightarrow$ True, what is the most likely path?
\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $):$

$$
-\log P_{\omega_{0}}(p, q)=\min _{\omega}\left\{-\log P_{\omega}(p, q)\right\}
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
\begin{gathered}
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3} \\
x:=-\log p, y:=-\log q \quad \text { Hidden Markov Model }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{t} P_{l l}(x, y) & =2 x \\
P_{r l l}(p, q) & =p^{2} q \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

Maximum Likelihood problem: supposing $M \rightarrow$ True, what is the most likely path?
\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $):$

$$
-\log P_{\omega_{0}}(p, q)=\min _{\omega}\left\{-\log P_{\omega}(p, q)\right\}
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
\begin{gathered}
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3} \\
x:=-\log p, y:=-\log q \quad \text { Hidden Markov Model }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{t} P_{l l}(x, y) & =2 x \\
\mathrm{t} P_{r l l}(x, y) & =2 x+y \\
P_{r r r}(p, q) & =q^{3}
\end{aligned}
$$

\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $)$:

$$
-\log P_{\omega_{0}}(p, q)=\min _{\omega}\left\{-\log P_{\omega}(p, q)\right\}
$$

(True \oplus_{p} False $) \oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
\begin{gathered}
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3} \\
x:=-\log p, y:=-\log q \quad \text { Hidden Markov Model }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{t} P_{l l}(x, y) & =2 x \\
\mathrm{t} P_{r l l}(x, y) & =2 x+y \\
\mathrm{t} P_{r r r}(x, y) & =3 y
\end{aligned}
$$

Maximum Likelihood problem: supposing $M \rightarrow$ True, what is the most likely path?
\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $):$

$$
-\log P_{\omega_{0}}(p, q)=\min _{\omega}\left\{-\log P_{\omega}(p, q)\right\}
$$

(True \oplus_{p} False $) \oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
\begin{gathered}
P_{\text {True }}(p, q)=p^{2}+p^{2} q+q^{3} \\
x:=-\log p, y:=-\log q \quad \text { Hidden Markov Model }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{t} P_{l l}(x, y) & =2 x \\
\mathrm{t} P_{r l l}(x, y) & =2 x+y \\
\mathrm{t} P_{r r r}(x, y) & =3 y
\end{aligned}
$$

Maximum Likelihood problem: supposing $M \rightarrow$ True, what is the most likely path?
\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $):$

$$
\mathrm{t} P_{\omega_{0}}(x, y)=\min \{2 x, 2 x+y, 3 y\}
$$

$\left(\right.$ True \oplus_{p} False $) \oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
\begin{aligned}
x:=-\log p, y & :=-\log q \\
\mathrm{t} P_{l l}(x, y) & =2 x \\
\mathrm{t} P_{r l l}(x, y) & =2 x+y \\
\mathrm{t} P_{r r r}(x, y) & =3 y
\end{aligned}
$$

\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $)$:

$$
\mathrm{t} P_{\omega_{0}}(x, y)=\min \{2 x, 2 x+y, 3 y\}
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$\underline{\text { tropical roots }} \mapsto$ line $y=\frac{2}{3} x$

\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $)$:

$$
\mathrm{t} P_{\omega_{0}}(x, y)=\min \{2 x, 2 x+y, 3 y\}
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

 $\underline{\text { tropical roots }} \mapsto$ line $y=\frac{2}{3} x$- $r r r$ most likely as soon $y \leq \frac{2}{3} x$
- ll most likely otherwise

\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $)$:

$$
\mathrm{t} P_{\omega_{0}}(x, y)=\min \{2 x, 2 x+y, 3 y\}
$$

(True \oplus_{p} False) $\oplus_{p}\left(\left(\right.\right.$ True \oplus_{p} False $) \oplus_{p}\left(\right.$ False \oplus_{p} True $\left.)\right)$

$$
\underline{\text { tropical roots }} \mapsto \text { line } y=\frac{2}{3} x
$$

- $r r r$ most likely as soon $1-p \geq p^{\frac{2}{3}}$

$$
\text { (e.g } p=\frac{1}{4} \text {) }
$$

- ll most likely otherwise

\rightarrow find $\omega_{0} \in\{l l, r l l, r r r\}$ minimizing $-\log P\left(M \rightarrow \omega_{0}\right.$ True $\mid M \rightarrow$ True $)$:

$$
\mathrm{t} P_{\omega_{0}}(x, y)=\min \{2 x, 2 x+y, 3 y\}
$$

$$
M:=\text { fix. }\left(\lambda x \text {.True } \oplus_{p} x\right) \rightarrow\left(\lambda x . \text { True } \oplus_{p} x\right) M \rightarrow \text { True } \oplus_{p} M
$$

$M:=$ fix. $\left(\lambda x\right.$. True $\left.\oplus_{p} x\right) \rightarrow\left(\lambda x\right.$. True $\left.\oplus_{p} x\right) M \rightarrow$ True $\oplus_{p} M$

$$
\begin{array}{ll}
M \rightarrow_{p} \text { True } & p \\
M \rightarrow{ }_{q} M \rightarrow{ }_{p} \text { True } & q p \\
M \rightarrow_{q} M{ }_{q} M \rightarrow_{p} \text { True } & q^{2} p
\end{array}
$$

$M:=$ fix. $\left(\lambda x\right.$. True $\left.\oplus_{p} x\right) \rightarrow\left(\lambda x\right.$. True $\left.\oplus_{p} x\right) M \rightarrow$ True $\oplus_{p} M$

$$
\begin{array}{lc}
M \rightarrow{ }_{p} \text { True } & p \\
M \rightarrow{ }_{q} M \rightarrow_{p} \text { True } & q p \\
M \rightarrow{ }_{q} M{ }_{q} M \rightarrow_{p} \text { True } & q^{2} p \\
\quad \ldots & \\
& \\
P_{\text {True }}(p, q)=\sum_{n=0}^{\infty} p q^{n}=\frac{p}{1-q}=1
\end{array}
$$

$M:=$ fix. $\left(\lambda x\right.$.True $\left.\oplus_{p} x\right) \rightarrow\left(\lambda x\right.$.True $\left.\oplus_{p} x\right) M \rightarrow$ True $\oplus_{p} M$

$$
\begin{array}{ll}
M \rightarrow_{p} \text { True } & p \\
M \rightarrow_{q} M \rightarrow_{p} \text { True } & q p \\
M \rightarrow_{q} M \rightarrow_{q} M \rightarrow_{p} \text { True } & q^{2} p \\
\ldots
\end{array}
$$

$$
\mathrm{t} P_{\text {True }}(x, y)=\inf _{n \in \mathbb{N}}\{x+n y\}=x .
$$

$M:=$ fix. $\left(\lambda x\right.$. True $\left.\oplus_{p} x\right) \rightarrow\left(\lambda x\right.$. True $\left.\oplus_{p} x\right) M \rightarrow$ True $\oplus_{p} M$

$$
\begin{array}{ll}
M \rightarrow p \text { True } & x \\
M \rightarrow p M \rightarrow_{p} \text { True } & x+y \\
M \rightarrow p M \rightarrow p M \rightarrow p \text { True } & x+2 y
\end{array}
$$

$$
P_{\text {True }}(p, q)=\sum_{n=0}^{\infty} p q^{n}=\frac{p}{1-q}=1
$$

$$
\mathrm{t} P_{\text {True }}(x, y)=\inf _{n \in \mathbb{N}}\{x+n y\}=x
$$

$$
M:=\text { fix. }\left(\lambda x . \text { True } \oplus_{p} x\right) \rightarrow\left(\lambda x . \text { True } \oplus_{p} x\right) M \rightarrow \text { True } \oplus_{p} M
$$

$M \rightarrow{ }_{p}$ True	x
$M \rightarrow{ }_{p} M \rightarrow{ }_{p}$ True	$x+y$
$M \rightarrow{ }_{p} M \rightarrow{ }_{p} M \rightarrow{ }_{p}$ True	$x+2 y$

$$
P_{\text {True }}(p, q)=\sum_{n=0}^{\infty} p q^{n}=\frac{p}{1-q}=1
$$

$$
\mathrm{t} P_{\text {True }}(x, y)=\inf _{n \in \mathbb{N}}\{x+n y\}=x .
$$

Outline

(1) Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity
(3) Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of PPCF
(5) Overview of our recent results (CSL24-Barbarossa, Pistone)

6 Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces
λ-calculus + Probabilities + Arithmetic + Conditional $+\frac{\vdash M: A \rightarrow A}{\vdash \text { fix. } M: A}$
λ-calculus + Probabilities + Arithmetic + Conditional $+\frac{\vdash M: A \rightarrow A}{\vdash \text { fix. } M: A}$ \mathbb{L} Rel: the \mathbb{L}-Weighted Relational Model

λ-calculus + Probabilities + Arithmetic + Conditional $+\frac{\vdash M: A \rightarrow A}{\vdash \text { fix. } M: A}$ \mathbb{L} Rel: the \mathbb{L}-Weighted Relational Model

 type $A \quad \mapsto \quad \mathbb{L}$-module $\mathbb{L} \llbracket A \rrbracket$ with metric d_{∞}
λ-calculus + Probabilities + Arithmetic + Conditional $+\frac{\vdash M: A \rightarrow A}{\vdash \text { fix. } M: A}$ \mathbb{L} Rel: the \mathbb{L}-Weighted Relational Model

$$
\begin{array}{ccc}
\text { type } A & \mapsto & \mathbb{L} \text {-module } \mathbb{L}^{\llbracket A \rrbracket} \text { with metric } d_{\infty} \\
\text { program } x: A \vdash M: B & \mapsto & \text { tropical power series } \\
& \llbracket x: A \vdash M: B \rrbracket: \mathbb{L} \llbracket A \rrbracket \rightarrow \mathbb{L}^{\llbracket B \rrbracket} \\
\llbracket x: A \vdash M: B \rrbracket(\mathbf{x})_{b}=\inf _{\mu \in \mathcal{M}_{\mathrm{f}}(\llbracket A \rrbracket)}\left\{\mathrm{M}_{\mu, b}+\mu \mathrm{x}\right\}
\end{array}
$$

λ-calculus + Probabilities + Arithmetic + Conditional $+\frac{\vdash M: A \rightarrow A}{\vdash \text { fix. } M: A}$ \mathbb{L} Rel: the \mathbb{L}-Weighted Relational Model

type $A \quad \mapsto \quad \mathbb{L}$-module $\mathbb{L}^{\llbracket A \rrbracket}$ with metric d_{∞}

$$
\begin{array}{ccc}
\text { program } x: A \vdash M: B \quad \mapsto & \text { tropical power series } \\
& \llbracket x: A \vdash M: B \rrbracket: \mathbb{L} \llbracket A \rrbracket
\end{array} \mathbb{L}^{\llbracket B \rrbracket}
$$

$$
\llbracket x: A \vdash M: B \rrbracket(\mathbf{x})_{b}=\inf _{\mu \in \mathcal{M}_{\mathrm{f}}(\llbracket A \rrbracket)}\left\{\mathrm{M}_{\mu, b}+\mu \mathbf{x}\right\}
$$

Theorem. For any term M : Nat of $\mathbb{P P C F}$ and $n \in \mathbb{N}, \llbracket M \rrbracket \in \mathbb{L}^{\mathbb{N}}$ and

$$
\forall n \in \mathbb{N}, \quad \llbracket M \rrbracket_{n}=\begin{gathered}
\text { negative log-probability of (any of }) \text { the } \\
\text { most likely reduction paths } M \rightarrow \underline{n} .
\end{gathered}
$$

Outline

(1) Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity

3 Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of PPCF
(5) Overview of our recent results (CSL24 - Barbarossa, Pistone)

6 Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces

$$
F M=\sum_{n=0}^{\infty} \frac{1}{m} \mathrm{D}^{(n)}\left[F ; M^{n} \mid(0)\right.
$$

$$
\begin{aligned}
& F M=\sum_{n=0}^{\infty} \frac{1}{1 n} \mathrm{D}^{(n)}\left[F ; M^{n}\right](0) \\
& \mid{ }^{\text {tropicalization }} \\
& F M=\inf _{n \in \mathbb{N}} \mathrm{D}^{(n)}\left[F ; M^{n}\right](0)
\end{aligned}
$$

$$
\begin{aligned}
F M & =\sum_{n=0}^{\infty} \frac{1}{!n} \mathrm{D}^{(n)}\left[F ; M^{n}\right](0) \\
F M & =\inf _{n \in \mathbb{N}} \underbrace{(n)}_{n \text {-Lipschitz function }}[F) M^{n}](0)
\end{aligned}
$$

F is the limit of more and more sensitive approximations

Tropical Taylor $=$ Lipschitz Approximation

- Taylor meets Lipschitz:
- Taylor meets Lipschitz:

Theorem. [Lipschitz approximation] For any simply typed term M, its Taylor expansion $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions.

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket
$$

- Taylor meets Lipschitz:

Theorem. [Lipschitz approximation] For any simply typed term M, its Taylor expansion $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions.

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket
$$

- Finiteness: tropical power series collapse to polynomials
- Taylor meets Lipschitz:

Theorem. [Lipschitz approximation] For any simply typed term M, its Taylor expansion $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions.

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket
$$

- Finiteness: tropical power series collapse to polynomials

Theorem. For any tropical power series $f: \mathbb{L}^{k} \rightarrow \mathbb{L}$ and for any $\epsilon>0$, the restriction of f to $[\epsilon,+\infty]^{k}$ is a tropical polynomial.

$$
f(x)=\inf _{n} \varphi_{n}(x)
$$

- Taylor meets Lipschitz:

Theorem. [Lipschitz approximation] For any simply typed term M, its Taylor expansion $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions.

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket
$$

- Finiteness: tropical power series collapse to polynomials

Theorem. For any tropical power series $f: \mathbb{L}^{k} \rightarrow \mathbb{L}$ and for any $\epsilon>0$, the restriction of f to $[\epsilon,+\infty]^{k}$ is a tropical polynomial.

$$
f(x)=\inf _{n} \varphi_{n}(x)=\min _{0 \leq n \leq N} \varphi_{n}(x) .
$$

- Taylor meets Lipschitz:

Theorem. [Lipschitz approximation] For any simply typed term M, its Taylor expansion $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions.

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket
$$

- Finiteness: tropical power series collapse to polynomials

Theorem. For any tropical power series $f: \mathbb{L}^{k} \rightarrow \mathbb{L}$ and for any $\epsilon>0$, the restriction of f to $[\epsilon,+\infty]^{k}$ is a tropical polynomial.

$$
f(x)=\inf _{n} \varphi_{n}(x)=\min _{0 \leq n \leq N} \varphi_{n}(x) .
$$

- Tropical semantics beyond $\mathbb{L} R e l$:
- Taylor meets Lipschitz:

Theorem. [Lipschitz approximation] For any simply typed term M, its Taylor expansion $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions.

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket
$$

- Finiteness: tropical power series collapse to polynomials

Theorem. For any tropical power series $f: \mathbb{L}^{k} \rightarrow \mathbb{L}$ and for any $\epsilon>0$, the restriction of f to $[\epsilon,+\infty]^{k}$ is a tropical polynomial.

$$
f(x)=\inf _{n} \varphi_{n}(x)=\min _{0 \leq n \leq N} \varphi_{n}(x)
$$

- Tropical semantics beyond $\mathbb{L R e l}$:

Theorem. [$\mathbb{L M o d} \simeq \mathbb{L C C a t}$ is a model of STD $\lambda \mathrm{C}]$ The equivalent categories of \mathbb{L}-modules and complete generalized metric spaces form a model of ST $\partial \lambda \mathrm{C}$ which extends the \mathbb{L}-weighted relational model.

Outline

(1) (Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity
(3) Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of $\mathbb{P P C F}$
(5) Overview of our recent results (CSL24 - Barbarossa, Pistone)
(6) Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces

Future Work

What is the relevance of tropical methods in the study of higher-order programming languages?

Future Work

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)

Future Work

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.

Can we do e.g. \mathbb{Q}-graded types? Is there something like a \sqrt{x} operator?

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.

Can we do e.g. \mathbb{Q}-graded types? Is there something like a \sqrt{x} operator?

- probabilistic metrics \rightarrow Kantorovich metric, differential privacy

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.

Can we do e.g. \mathbb{Q}-graded types? Is there something like a \sqrt{x} operator?

- probabilistic metrics \rightarrow Kantorovich metric, differential privacy Explore the tropical metrics in $\mathbb{L M o d} \simeq \mathbb{L C C a t}$.

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.

Can we do e.g. \mathbb{Q}-graded types? Is there something like a \sqrt{x} operator?

- probabilistic metrics \rightarrow Kantorovich metric, differential privacy

Explore the tropical metrics in $\mathbb{L M o d} \simeq \mathbb{L C C a t}$.

$$
\frac{f(x)}{f(y)} \leq e^{L d(x, y)}
$$

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.

Can we do e.g. \mathbb{Q}-graded types? Is there something like a \sqrt{x} operator?

- probabilistic metrics \rightarrow Kantorovich metric, differential privacy

Explore the tropical metrics in $\mathbb{L} M o d \simeq \mathbb{L} C C a t$.

$$
-\log \frac{f(x)}{f(y)} \geq-\log e^{L d(x, y)}
$$

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.

Can we do e.g. \mathbb{Q}-graded types? Is there something like a \sqrt{x} operator?

- probabilistic metrics \rightarrow Kantorovich metric, differential privacy Explore the tropical metrics in $\mathbb{L} \operatorname{Mod} \simeq \mathbb{L C C a t}$.

$$
\log f(x)-\log f(y) \leq L d(x, y)
$$

What is the relevance of tropical methods in the study of higher-order programming languages?

- Finiteness: to what extent is tropical semantics finitary? (i.e. which terms are interpreted by tropical polynomials?)
- Sensitivity analysis meets resource analysis: interpret \mathbb{N}-graded types $!_{n} A \multimap B$ as Lipschitz maps.
Can we do e.g. \mathbb{Q}-graded types? Is there something like a \sqrt{x} operator?
- probabilistic metrics \rightarrow Kantorovich metric, differential privacy Explore the tropical metrics in $\mathbb{L M o d} \simeq \mathbb{L} C C a t$.

$$
\log f(x)-\log f(y) \leq L d(x, y)
$$

Thank you!

Outline

(1) Quantitative) Semantics of Programs
(2) Quantitative Semantics: Linearity
(3) Tropical Polynomials and Effectful Computation
(4) Tropically Weighted Relational Semantics of PPCF
(5) Overview of our recent results (CSL24 - Barbarossa, Pistone)

6 Future Work
(7) Bonus: Finitness, Taylor, Generalised Metric Spaces

$$
\varphi_{0}(x)=1
$$

$$
\begin{aligned}
\varphi_{0}(x) & =1 \\
\varphi_{1}(x) & =\min \left\{x+\frac{1}{2}, 1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{0}(x)=1 \\
& \varphi_{1}(x)=\min \left\{x+\frac{1}{2}, 1\right\} \\
& \varphi_{2}(x)=\min \left\{2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{0}(x)=1 \\
& \varphi_{1}(x)=\min \left\{x+\frac{1}{2}, 1\right\} \\
& \varphi_{2}(x)=\min \left\{2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi_{3}(x)=\min \left\{3 x+\frac{1}{8}, 2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{0}(x)=1 \\
& \varphi_{1}(x)=\min \left\{x+\frac{1}{2}, 1\right\} \\
& \varphi_{2}(x)=\min \left\{2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi_{3}(x)=\min \left\{3 x+\frac{1}{8}, 2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi_{4}(x)=\min \left\{4 x+\frac{1}{16}, 3 x+\frac{1}{8}, 2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{0}(x)=1 \\
& \varphi_{1}(x)=\min \left\{x+\frac{1}{2}, 1\right\} \\
& \varphi_{2}(x)=\min \left\{2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi_{3}(x)=\min \left\{3 x+\frac{1}{8}, 2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi_{4}(x)=\min \left\{4 x+\frac{1}{16}, 3 x+\frac{1}{8}, 2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi(x)=\inf _{n}\left\{n x+\frac{1}{2^{n}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{0}(x)=1 \\
& \varphi_{1}(x)=\min \left\{x+\frac{1}{2}, 1\right\} \\
& \varphi_{2}(x)=\min \left\{2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi_{3}(x)=\min \left\{3 x+\frac{1}{8}, 2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi_{4}(x)=\min \left\{4 x+\frac{1}{16}, 3 x+\frac{1}{8}, 2 x+\frac{1}{4}, x+\frac{1}{2}, 1\right\} \\
& \varphi(x)=\inf _{n}\left\{n x+\frac{1}{2^{n}}\right\}
\end{aligned}
$$

φ is "locally" a polynomial:

$$
\forall \epsilon>0 \exists n \in \mathbb{N} \text { s.t. }\left.\quad \varphi\right|_{[\epsilon,+\infty]}=\varphi_{n}
$$

Theorem. Let $f:[0,+\infty]^{k} \rightarrow[0,+\infty]$ be a tropical power series given by

$$
f(x)=\inf _{i \in I}\left\{n_{i} x+c_{i}\right\} .
$$

For any $\epsilon>0$ there exists $I_{\epsilon} \subseteq_{\text {fin }} I$ such that

$$
f(x)=\min _{i \in I_{\epsilon}}\left\{n_{i} x+c_{i}\right\} \quad\left(x \in[\epsilon,+\infty]^{k}\right)
$$

Theorem. Let $f:[0,+\infty]^{k} \rightarrow[0,+\infty]$ be a tropical power series given by

$$
f(x)=\inf _{i \in I}\left\{n_{i} x+c_{i}\right\} .
$$

For any $\epsilon>0$ there exists $I_{\epsilon} \subseteq_{\text {fin }} I$ such that

$$
f(x)=\min _{i \in I_{\epsilon}}\left\{n_{i} x+c_{i}\right\} \quad\left(x \in[\epsilon,+\infty]^{k}\right)
$$

Corollary. Let $M[p]$: Nat be a PPCF term with parametric choice \oplus_{p}. Then, for any $n \in \mathbb{N}$ and $\epsilon>0,\left.\llbracket M \rrbracket_{n}\right|_{[\epsilon,+\infty]}$ is a tropical polynomial.

Theorem. Let $f:[0,+\infty]^{k} \rightarrow[0,+\infty]$ be a tropical power series given by

$$
f(x)=\inf _{i \in I}\left\{n_{i} x+c_{i}\right\} .
$$

For any $\epsilon>0$ there exists $I_{\epsilon} \subseteq_{\text {fin }} I$ such that

$$
f(x)=\min _{i \in I_{\epsilon}}\left\{n_{i} x+c_{i}\right\} \quad\left(x \in[\epsilon,+\infty]^{k}\right)
$$

Corollary. Let $M[p]$: Nat be a PPCF term with parametric choice \oplus_{p}. Then, for any $n \in \mathbb{N}$ and $\epsilon>0,\left.\llbracket M \rrbracket_{n}\right|_{[\epsilon,+\infty]}$ is a tropical polynomial.
\rightarrow if we can compute the polynomial $\left.\llbracket M \rrbracket_{n}\right|_{[\epsilon,+\infty]}$ for ϵ small enough, then we can compute maximum likelihood values for M.

$$
\begin{aligned}
& f: \mathbb{L}^{X} \longrightarrow \mathbb{L}^{Y} \\
& f(x)_{a}=\inf _{\mu \in!X}\left\{\widehat{f}_{\mu, a}+\mu x\right\}
\end{aligned}
$$

$$
\begin{gathered}
f: \mathbb{L}^{X} \longrightarrow \mathbb{L}^{Y} \\
f(x)_{a}=\inf _{\mu \in!X}\left\{\widehat{f}_{\mu, a}+\mu x\right\}
\end{gathered}
$$

\mathbb{L}^{X} naturally endowed with the L_{∞}-metric $d_{\infty}(x, y)=\sup _{a \in X}\left|x_{a}-y_{a}\right|$.

$$
\begin{gathered}
f: \mathbb{L}^{X} \longrightarrow \mathbb{L}^{Y} \\
f(x)_{a}=\inf _{\mu \in!X}\left\{\widehat{f}_{\mu, a}+\mu x\right\}
\end{gathered}
$$

\mathbb{L}^{X} naturally endowed with the L_{∞}-metric $d_{\infty}(x, y)=\sup _{a \in X}\left|x_{a}-y_{a}\right|$.

Theorem.

- f linear: $\widehat{f}_{\mu, a}<\infty$ iff $\mu=[x]$
$\Rightarrow f$ is non-expansive: $d_{\infty}(f(x), g(x)) \leq d_{\infty}(x, y)$.

$$
\begin{gathered}
f: \mathbb{L}^{X} \longrightarrow \mathbb{L}^{Y} \\
f(x)_{a}=\inf _{\mu \in!X}\left\{\widehat{f}_{\mu, a}+\mu x\right\}
\end{gathered}
$$

\mathbb{L}^{X} naturally endowed with the L_{∞}-metric $d_{\infty}(x, y)=\sup _{a \in X}\left|x_{a}-y_{a}\right|$.

Theorem.

- f linear: $\widehat{f}_{\mu, a}<\infty$ iff $\mu=[x]$
$\Rightarrow f$ is non-expansive: $d_{\infty}(f(x), g(x)) \leq d_{\infty}(x, y)$.
- $f K$-duplicating: $\widehat{f}_{\mu, a}<\infty$ iff $\sharp \mu<K$
$\Rightarrow f$ is K-Lipschitz: $d_{\infty}(f(x), f(y)) \leq K d_{\infty}(x, y)$.

$$
\begin{gathered}
f: \mathbb{L}^{X} \longrightarrow \mathbb{L}^{Y} \\
f(x)_{a}=\inf _{\mu \in!X}\left\{\widehat{f}_{\mu, a}+\mu x\right\}
\end{gathered}
$$

\mathbb{L}^{X} naturally endowed with the L_{∞}-metric $d_{\infty}(x, y)=\sup _{a \in X}\left|x_{a}-y_{a}\right|$.

Theorem.

- f linear: $\widehat{f}_{\mu, a}<\infty$ iff $\mu=[x]$
$\Rightarrow f$ is non-expansive: $d_{\infty}(f(x), g(x)) \leq d_{\infty}(x, y)$.
- $f K$-duplicating: $\widehat{f}_{\mu, a}<\infty$ iff $\sharp \mu<K$
$\Rightarrow f$ is K-Lipschitz: $d_{\infty}(f(x), f(y)) \leq K d_{\infty}(x, y)$.
- otherwise, f is locally Lipschitz:

$d_{\infty}(f(x), f(y)) \leq K_{x} d_{\infty}(x, y)$ in some open neighborhood of x, y.

$$
\left.F M=\inf _{n \in \mathbb{N}} \mathrm{D}^{(n)}\left[F ; M^{n}\right](0)\right)
$$

Theorem. For any simply typed λ-term M,

- if $t \in \mathcal{T}(M)$, then $\llbracket t \rrbracket$ is a Lipschitz function;
- $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions:

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket .
$$

Theorem. For any simply typed λ-term M,

- if $t \in \mathcal{T}(M)$, then $\llbracket t \rrbracket$ is a Lipschitz function;
- $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions:

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket .
$$

Recall that, for $M: A \rightarrow B, \llbracket M \rrbracket$ is only locally Lipschitz: for any $x \in \llbracket A \rrbracket$, there is some Lipschitz constant L_{x} that holds "around" x. Can we approximate L_{x} ?

Theorem. For any simply typed λ-term M,

- if $t \in \mathcal{T}(M)$, then $\llbracket t \rrbracket$ is a Lipschitz function;
- $\mathcal{T}(M)$ decomposes $\llbracket M \rrbracket$ as an inf of Lipschitz functions:

$$
\llbracket M \rrbracket=\inf _{t \in \mathcal{T}(M)} \llbracket t \rrbracket .
$$

Recall that, for $M: A \rightarrow B, \llbracket M \rrbracket$ is only locally Lipschitz: for any $x \in \llbracket A \rrbracket$, there is some Lipschitz constant L_{x} that holds "around" x. Can we approximate L_{x} ?

Corollary. Let $M: A \rightarrow B$ and $N: A$. For all $t \in \mathcal{T}(M)$ and $\delta>0$, unless $\llbracket t \rrbracket(\llbracket N \rrbracket) \neq \infty$, the map $\llbracket M \rrbracket(x)$ is $\frac{\llbracket t \rrbracket(\llbracket N \rrbracket+3 \delta)}{\delta}$-Lipschitz over the open ball $B_{\delta}(\llbracket N \rrbracket)$.

Tropical Algebra and Generalized Metric Spaces
From \mathbb{L} Rel to \mathbb{L} Mod:

From $\mathbb{L} R e l$ to $\mathbb{L} M o d:$

\mathbb{L}^{X} is a \mathbb{L}-module with "a chosen base" (X)

From \mathbb{L} Rel to \mathbb{L} Mod:

\mathbb{L}^{X} is a \mathbb{L}-module with "a chosen base" (X)
$\Rightarrow \mathbb{L}$ Mod: arbitrary \mathbb{L}-modules (with idempotent sum) and their homomorphisms.

From \mathbb{L} Rel to \mathbb{L} Mod:

\mathbb{L}^{X} is a \mathbb{L}-module with "a chosen base" (X)
$\Rightarrow \mathbb{L}$ Mod: arbitrary \mathbb{L}-modules (with idempotent sum) and their homomorphisms.
$\underline{\mathbb{L M o d} \text { is equivalent to } \mathbb{L C C a t}:}$

From $\mathbb{L} R e l$ to $\mathbb{L} M o d:$

\mathbb{L}^{X} is a \mathbb{L}-module with "a chosen base" (X)
$\Rightarrow \mathbb{L}$ Mod: arbitrary \mathbb{L}-modules (with idempotent sum) and their homomorphisms.
$\underline{\mathbb{L M o d} \text { is equivalent to } \mathbb{L C C a t}: ~}$

- objects are complete generalized metric spaces $(X, a: X \times X \rightarrow \mathbb{L})$ (a.k.a. \mathbb{L}-enriched categories)

$$
\begin{aligned}
0 & \geq a(x, x) \\
a(x, y)+a(y, z) & \geq a(x, z)
\end{aligned}
$$

From $\mathbb{L} R e l$ to \mathbb{L} Mod:

\mathbb{L}^{X} is a \mathbb{L}-module with "a chosen base" (X)
$\Rightarrow \mathbb{L}$ Mod: arbitrary \mathbb{L}-modules (with idempotent sum) and their homomorphisms.
$\underline{\mathbb{L M o d} \text { is equivalent to } \mathbb{L C C a t}:}$

- objects are complete generalized metric spaces $(X, a: X \times X \rightarrow \mathbb{L})$ (a.k.a. \mathbb{L}-enriched categories)

$$
\begin{aligned}
0 & \geq a(x, x) \\
a(x, y)+a(y, z) & \geq a(x, z)
\end{aligned}
$$

- arrows are continuous non-expansive functions
(a.k.a. \mathbb{L}-enriched functors)
$\underline{\text { From } \mathbb{L} R e l ~ t o ~} \mathbb{L} M o d:$
\mathbb{L}^{X} is a \mathbb{L}-module with "a chosen base" (X)
$\Rightarrow \mathbb{L}$ Mod: arbitrary \mathbb{L}-modules (with idempotent sum) and their homomorphisms.
$\underline{\mathbb{L M o d} \text { is equivalent to } \mathbb{L C C a t}:}$
- objects are complete generalized metric spaces $(X, a: X \times X \rightarrow \mathbb{L})$ (a.k.a. \mathbb{L}-enriched categories)

$$
\begin{aligned}
0 & \geq a(x, x) \\
a(x, y)+a(y, z) & \geq a(x, z)
\end{aligned}
$$

- arrows are continuous non-expansive functions
(a.k.a. \mathbb{L}-enriched functors)

Theorem. \mathbb{L} Mod $_{!} \simeq \mathbb{L C C a t}$! extends \mathbb{L} Rel! as a model of the ST $\partial \lambda \mathrm{C}$

