An overview on the Taylor expansion of programs

Davide Barbarossa

AILA - XXVII INCONTRO DI LOGICA

Caserta, 13/09/2022

Differential λ -calculus

Good old undergraduate Taylor:

$$F(U) = F(0) + (DF \bullet U)(0) + \sum_{n \ge 2} \frac{1}{n!} (D^n F \bullet U^n)(0)$$

where
$$D(\underline{\ }) \bullet (\underline{\ }) : (F, U) \longmapsto \frac{d}{dx} F \cdot U$$

Differential λ -calculus

Good old undergraduate Taylor:

$$F(U) = F(0) + (DF \bullet U)(0) + \sum_{n \ge 2} \frac{1}{n!} (D^n F \bullet U^n)(0)$$

where
$$D(\underline{\ }) \bullet (\underline{\ }) : (F, U) \longmapsto \frac{d}{dx} F \cdot U$$

Best linear approximation of
$$F(\underline{\ }) = (DF \bullet \underline{\ })(0) = \frac{d}{dx}\Big|_{x=0} F \cdot (\underline{\ })$$

$$= F \text{ "forced" to use } (\underline{\ }) \text{ exactly once}$$

Differential λ -calculus [ER03]

Linearisation (in analysis and computer science) of $F = \frac{d}{dx}\Big|_{x=0} F \cdot (\underline{\ })$

Differential λ -terms

The \mathbb{Q} -module $\partial \Lambda$ given by the words:

$$F ::= 0 \mid x \mid \lambda x.F \mid FF \mid (DF) \bullet F \mid pF + qF$$

quotiented under $\alpha\text{-equivalence}$ and other natural equations involving "+".

Reductions

The usual β -reduction plus: $\mathtt{D}(\lambda x.F) \bullet U \to_{\partial} \lambda x. \left(\frac{d}{dx}F \cdot U\right)$.

$$\frac{d}{dx}(PQ)\cdot U:=\left(\frac{d}{dx}P\cdot U\right)Q+\left(\mathtt{D}P\bullet\left(\frac{d}{dx}Q\cdot U\right)\right)Q$$

A quick categorical parenthesis [BCS09, Man12]

Cartesian Closed Differential Category

It is a CCC enriched in commutative monoids (i.e. in each $\operatorname{Hom}(X,Y)$ there is 0 and we can do f+g) with $(f+g)\circ h=f\circ h+g\circ h$, $0\circ f=0$, cartesian closed structure compatible with +, plus a differential map $D:\operatorname{Hom}(X,Y)\to\operatorname{Hom}(X\times X,Y)$ verifying some axioms.

Cartesian Closed Differential λ -Category

It is a Cartesian Closed Differential Category satisfying the D-Curry axiom: $D \operatorname{curry} f = \operatorname{curry} (Df \circ \langle \pi_X \times 0_Y, \pi_Y \times \operatorname{id}_Y \rangle)$, for all $f \in \operatorname{Hom}(X \times Y, Z)$.

Example: convenient vector spaces

Objects: particular kinds of locally convex topological vector spaces Morphisms: smooth maps with pointwise addition

Differential $Df: X \times X \rightarrow Y$ of smooth $f: X \rightarrow Y$ given by:

$$Df(x,u) := \frac{d}{dt}\Big|_{t=0} f(x+tu).$$

The (quantitative) Taylor expansion of a λ -term

Morally:

$$FU = \sum_{n \in \mathbb{N}} \frac{1}{n!} \left(\mathbf{p}^n F \bullet U^n \right) (0)$$

The (quantitative) Taylor expansion of a λ -term

Morally:

$$\Theta(FU) := \sum_{n \in \mathbb{N}} \frac{1}{n!} \left(p^n F \bullet U^n \right) (0)$$

The (quantitative) Taylor expansion of a λ -term

Morally:

$$\Theta(FU) := \sum_{n \in \mathbb{N}} \frac{1}{n!} \left(\mathbf{p}^n \Theta(F) \bullet \Theta(U)^n \right) (0)$$

The (quantitative) Taylor expansion of a λ -term [ER08]

Rigorously:

It is the map $\Theta: \Lambda \to \partial \Lambda$ given by:

$$\Theta(x) := x$$

$$\Theta(\lambda x.F) := \lambda x.\Theta(F)$$

$$\Theta(FU)$$
 := $\sum_{n\in\mathbb{N}}\frac{1}{n!}\left(\mathbf{D}^n\Theta(F)\bullet\Theta(U)^n\right)(0)$

Qualitative Taylor expansion [ER08]

Resource λ -terms

It is the set Λ^r defined by:

$$t ::= x \mid \lambda x.t \mid t[t, \dots, t]$$

with a reduction simulating \to_{∂} . We also have translation $(.)^{\partial}: \Lambda^r \to \partial \Lambda$ whose interesting case is $(s[u_1, \ldots, u_n])^{\partial} := (D^n s^{\partial} \bullet (u_1^{\partial}, \ldots, u_n^{\partial}))(0)$.

One has:

$$\Theta(F) = \sum_{t \in \mathcal{T}(F)} \frac{1}{m(t)} t^{\partial}$$

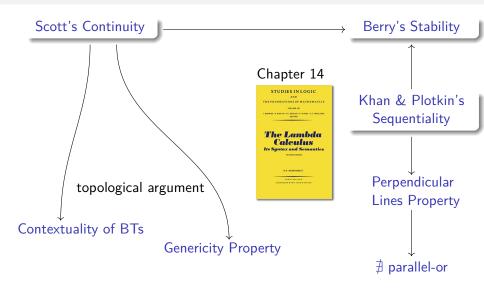
where $\mathcal{T}:\Lambda\to\mathscr{P}(\Lambda^r)$ is called the *qualitative Taylor expansion*, given by:

$$\mathcal{T}(x) := \{x\}$$

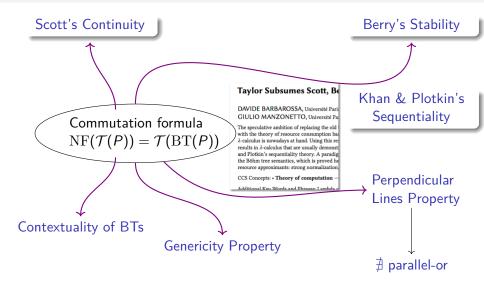
$$\mathcal{T}(\lambda x.F) := \{\lambda x.t \mid t \in \mathcal{T}(F)\}\$$

$$\mathcal{T}(FU) := \{s[u_1, \dots, u_n] \mid s \in \mathcal{T}(F) \text{ and } u_i \in \mathcal{T}(U)\}.$$

Classic results via labelled reduction



Classic results via Resource Approximation [BM20]



References

- R. Blute, J. Cockett, and R. Seely, *Cartesian differential categories*, Theory and Applications of Categories (2009), 622–672.
- Davide Barbarossa and Giulio Manzonetto, *Taylor subsumes Scott, Berry, Kahn and Plotkin*, Proc. ACM Program. Lang. **4** (2020), no. POPL, 1:1–1:23.
- Thomas Ehrhard and Laurent Regnier, *The differential lambda-calculus*, Theor. Comput. Sci. **309** (2003), no. 1-3, 1–41.
- Implies and the Taylor expansion of ordinary lambda-terms, Theor. Comput. Sci. **403** (2008), no. 2-3, 347–372.
- Giulio Manzonetto, What is a categorical model of the differential and the resource λ -calculi?, Mathematical Structures in Computer Science **22** (2012), no. 3, 451–520.