
On Dialectica and Differentiation, via Categories

Davide Barbarossa[0000−0003−4608−8282]

Department of Computer Science, University of Bath, UK
db2437@bath.ac.uk

https://davidebarbarossa12.github.io/

Abstract. Gödel’s Dialectica has been introduced and developed as a
logical transformation. Only recently has it been related with the, a
priori unrelated, notion of differentiation: we can now read it as a dif-
ferentiable program transformation. Building on that, we formulate the
relation between these two notions categorically, in the framework of dif-
ferential categories. Moreover, we study the relation between differential
categories and Dialectica categories. We do this by taking the point of
view of fibrations and (dependent) lenses, which allows us to keep a geo-
metrical intuition in mind by considering reverse tangent categories. The
viewpoint we propose opens many interesting further developments.

Keywords: Differential Categories · Dialectica Transformation · (De-
pendent) Lenses · Lambda-Calculus.

1 Introduction

Reverse differentiation and its categorical formulation We define in school the
derivative of a function on the reals as a certain limit, and its differential (giving
the error in output for a certain error in input) as the product of the derivative
at a point times the input error. Using partial derivatives, one generalises this to
differentiable maps f : Rn → Rm, for which we learned to define its differential
as Df : Rn×Rn → Rm, linear in (say) the second argument, as the directional
derivative Df(a, v) := Jaf ·v (Jaf being the Jacobian of f at a). Considered as a
function of v (thus, linear), we obtain what is called the pushforward f∗a of f at
a ∈ Rn. This situation can be abstracted by Cartesian differential categories [2],
where D is an operator on homsets, and the Cartesian closed version admits the
simply typed differential λ-calculus (ST∂λC for short) [13] as internal language
[5,14,21]. It is also natural to consider the case of smooth maps between smooth
manifolds [18] as the natural setting for differentiation, as the same constructions
can be carried out by working in a local system of coordinates: one constructs
the tangent bundle TA :=

∑
a∈A TaA of a manifold A and the pushforward of

f : A → B as a linear map on the tangent spaces, which one can think of as a
dependent function f∗ :

∏
a∈A[TaA ⊸ Tf(a)B] (we borrow the notation ⊸ from

Linear Logic for linear functions). The differential is now a map Tf : (a, v) ∈
TA→ (fa, f∗av) ∈ TB, which gives rise to a functor T . Also this situation can be
abstracted categorically, in the so-called tangent categories [6], where T is a given

https://davidebarbarossa12.github.io/

2 D. Barbarossa

endofunctor. The case of real functions is the one of Euclidean spaces where the
tangent spaces are all isomorphic to the base space and thus the tangent bundle
trivialises to TA ≃ A × A. All this is can be called forward differentiation, as
the functoriality of T amounts to the forward mode for computing the chain
rule. It is well-known that one can formulate these data in a different way:
since f∗a is linear, we can take its dual map (f∗a)

⊥
: T ∗

faB ⊸ T ∗
aA (which

is defined, in local coordinates, by the transpose of the Jacobian) and consider
the reverse differential of f as Rf : (a, v) ∈ f∗T ∗B → (a, (f∗a)

⊥
v) ∈ T ∗A,

where f∗T ∗B :=
∑

a∈A T ∗
faB is the pullback of the cotangent bundle T ∗B :=∑

b∈B T ∗
b B along f . Remarking that T⊥A :=

∏
a∈A T ∗A is precisely the space

of diffrential 1-forms, yet another common way of expressing R is to see it as a
mapping T⊥f : T⊥B → T⊥A of differential 1-forms on B to ones on A. In this
way T⊥ becomes a controvariant functor, so T⊥(f ◦ g) = T⊥g ◦ T⊥f , and this
corresponds to the backward mode for computing the chain rule, used e.g. in
machine learning algorithms. We will however stick to R instead of T⊥. Reverse
differentiation is abstracted in reverse tangent categories [9], where we do not
directly have a functor T⊥, but rather we have T together with an involution
(_)

∗ on fibrations that allows one to construct R. In the Euclidean case where
T ∗A ≃ TA ≃ A × A, the reverse differential of f is Rf : Rn × Rm → Rn

(note the swap of n and m with respect to Df), linear in the second argument.
This situation is abstracted by Cartesian reverse differential categories [4,8], a
particular case of reverse tangent ones, where R is a given operator on homsets.

Dialectica, its program-theoretical formulation and its links with differentiation
In [15] Gödel defined a transformation A 7→ AD, known as “Dialectica”, from in-
tuitioninstic arithmetic’s (say, HA) formulas to System T one. The transformed
formula AD contains two additional kinds of free variables, playing the role of
witnesses (w) and counters (c) for A, so AD = AD{w, c}. The theorem is that
provability in the source system yields provability in the target, thus obtaining a
relative consistency result with respect to the finitistic methods of T, see e.g. [1]:
if ⊢HA A then there are terms M ∈ T such that ⊢T AD{M, c} (where c is free).
Dialectica has been later broadly applied in the field of proof-mining [17]. Much
more recently, on an orthogonal direction, by taking a proof/program-theoretical
point of view, i.e. looking at Dialectica as a transformation of proofs (and not
just a transformation of formulas preserving provability), [22,23] showed that
it is also a genuine program transformation. If we restrict to the simply typed
λ-calculus (Λ for short), then one can define a variant, let us call it P, of System
T and see Dialectica as a transformation (_)

•, mutually defined with transfor-
mations (_)x (for each variable x), of (even untyped) programs from Λ to P.
Even if this correspondence involves a definitely logically poor source system
(and so not suited for, say, proof mining), Λ contains the arrow type, which
is the most delicate case in Gödel’s Dialectica, and it is definitely interesting
from a programming point of view, since it represents high-order computation.
The target P has simple types with products, plus a monadic type construc-
tor M[_] (similar to the Diller-Nahm variant of Dialectica [11]), together with
two functions W (witness) and C (counter) from simple types to P-types. The

On Dialectica and Differentiation, via Categories 3

relative consistency theorem of Gödel becomes then a soundness theorem for
such transformations: if x : A ⊢Λ M : B then x : W (A) ⊢P M• : W (B) and
x : W (A) ⊢P Mx : C(B)→M[C(A)] This has several interesting consequences,
e.g. understanding Dialectica as a sort of delimited continuation mechanism. But
the one of interest for this paper is that it allowed, in [16], to notice that the types
of M• and Mx perfectly match the ones of a function and its reverse differential
at a point x. This is not just a coincidence, as they show that Dialectica is indeed
a differentiable program transformation: given M a simply typed λ-term, M•

computes the differential of M , implementing a reverse differentiation algorithm
(i.e. by computing the chain rule as the reverse differential), and this is precisely
where the (_)x appears. The authors show this in several ways, most notably by
defining the logical relations at [16, Def. 4.8] between the Dialectica translated
programs in P and the differential simply typed λ-calculus, the latter being the
syntactical way of handling differentiation in λ-calculus.

This paper

This paper is divided in two different, but related, main sections, both stemming
from [16], with the aim of deepening some of its key points. We conclude in
Section 4 with many future work directions opened by our point of view.

Section 2:Dialectica and reverse differentiation In [16], the authors explain that
Dialectica is a differentiable program transformation by giving, among others, a
logical relation ∼ (and an auxiliary one, ▷◁) between the target language of the
transformation and the differential λ-calculus (ST∂λC for short). The central
theorem relates then the image of the transformation of a ordinary λ-term with
a certain ST∂λC-term. The trained differential λ-calculist can understand why
that term indeed encodes the reverse differentiation of the first, even if this is
not made explicit in the paper. We propose to explain the connection between
Dialectica and reverse differentiation by defining the analogue of the logical re-
lations ∼, ▷◁ using natural concepts from differential geometry (see for example
[18]), namely that of pushforward and, in Section 3, pullbacks. In order to handle
λ-calculus constructions we have to move to the world of Cartesian closed dif-
ferential categories. We achieve this in Theorem 1, Corollary 1 and Proposition
1. The main notions are explained in Subsection 2.1. Moreover, the other reason
why we choose a categorical setting is because the ST∂λC encodes forward dif-
ferentiation (the term λv.D[λx.M, v]N is the pushforward of M , as a function
of x, at N , i.e. its directional derivative at N); but since we know that Dialectica
performs a reverse differentiation, we would like to express it in a already reverse
setting, instead of hiding this reverse operation in the syntactic definition of ∼,
▷◁. Now, while there is no such a thing as a “reverse differential λ-calculus” in the
literature, Cartesian reverse differential (even tangent) categories do exist [4,9];
however, there is no closed version of them yet. But we can still use Cartesian
closed differential categories equipped with enough structure in order to express
reverse differentiation: that is the framework that we take in Subsection 2.1.

4 D. Barbarossa

Section 3: Differentiation, from Dialectica categories to Lenses Dialectica cate-
gories [10] are a categorical construction which mimics the Dialectica transfor-
mation. It is quite natural, by looking at it (see Definition 2), to see a strong
analogy with the typing of the reverse differential of a function (an arrow in the
base category). Despite this intuition being natural, to the best of our knowledge
has only been quickly pointed out in [16], where the authors say “In our point of
view, objects of Dialectica category generalize the relation between a space and
its tangent space”. We argue that the correct intuition should involve cotangent
spaces instead (see Remark 5). Moreover, given a Cartesian closed differential
category L, they define a functor from L to its Dialectica category, and one
needs enough structure on L (see Subsection 2.1) in order to talk about reverse
differentials of arrows. They suggest that their construction can be generalised.
We will see that the functor does not really use the fact that we start from a Di-
alectica category, in that it does not use subobjects. In fact, it immediately lifts
to (dependent) lenses (Corollary 3, Proposition 6), and we can indeed generalise
it to reverse differential/tangent categories (Proposition 7, 8). This allows to
keep a geometrical intuition in mind, but we loose the closedness condition and,
thus, the possibility of interpreting high-order languages. Importantly, in Propo-
sition 3 and Corollary 2 we show how the syntactical Dialectica transformation
of Section 2 can be expressed in the same categorical structure of lenses.

Remark 1. In all the paper we take, both from in an intuitive way and in a formal
way, a point of view based on fibrations and pullbacks. It must be remarked
that, while writing this paper, we realised that a similar viewpoint has just
very recently been explored in the preprint [3]. However, the direction taken
there is orthogonal to ours: we both look at Dialectica categories as a category
of lenses, but while we are interested in the links with reverse differentiation
and Dialectica as a program transformation, they are interested in lifting the
Dialectica construction on formulas (i.e. with non-trivial subobjects) to lenses.

Notations We write f ; g for the composition of f : A → B and g : B → C in a
category. We write 1A for the identity arrow on A, and we drop A when clear
from the context. If × denotes some product, we write πA1,A2

i : A1 × A2 → Ai

for the projections (and we drop the “A1, A2” if clear from the context). If a
category is closed, we denote λ/λ−1 its curry/uncurry operators. If the products
are symmetric (as it will always be), we confuse them, as well as λ : C(A ×
B,C)→ C(A,CB) and λ : C(B ×A,C)→ C(A,CB) and the same for uncurry.

2 Dialectica and reverse differentiation

2.1 The framework

Dialectica in Pédrot’s system P The calculus is given in [16, Fig. 1 and Def. 4.1],
but for the sake of clarity let us we recall here its the main features.

The first layer of syntax is that of a simply typed λ-calculus with pairs
(notation:⟨M,N⟩ for pairs and M i for projections) and product types (notation:

On Dialectica and Differentiation, via Categories 5

α (ground types) E → F

W αW (W (E) → W (F))× (W (E)× C(F) → M[C(E)])
C αC W (E)× C(F)

Fig. 1. Witnesses and Counters of a simple type. αW and αC are fixed ground types
of P associated with α. Remark that in the second componenet of the witness of an
arrow, we take a slightly different version, but equivalent, than the original, which
would curry our type as C(F) → W (E) → M[C(E)]. This is just because we want
to highlight the intuition of the reverse differentials: with dependent types in mind,
W (E) × C(F) = C(E → F) plays the role of

∑
e:E T ∗

feF = f∗T ∗F , so we could not
give v : C(F) before e : W (E) (what would v be cotangent at?).

x λx.M PQ

(_)• x ⟨λx.M• , λπ.(λx.Mx)π
1π2 ⟩ P •1Q•

(_)y

{
λπ.[π], x = y

λπ.0, x ̸= y
λπ.(λx.My)π

1π2 λπ.(Py⟨Q•, π⟩+ P •2⟨Q•, π⟩>>=Qy)

Fig. 2. Untyped Dialectica transformation. Remark that we take a slightly differ-
ent version, but equivalent, than the original, in order to fit with the modification
mentioned in Figure 1. Notice that with a slight abuse of α-equivalence, we have
(λx.M)• = ⟨λx.M• , (λx.M)x ⟩, which is already reminiscent of the pair “(f, f∗)”.

A × B), quotiened under the usual βη-equality. On the top of that, we have a
new monadic type constructor M[_], together with its return and bind term
constructors (notation: [M] and M>>=N), and a commutative monoid structure
on it (notation: 0, M + N) which is compatible with the monad structure. All
these equations (together with βη), constituting its equational semantics, are
denoted by =. Finally, since we are considering Dialectica as a transformation
of proofs, not just of formulas, the transformation is now given by two maps
W,C from simple types to P-types and two maps (_)

•
, (_)x (for x any variable)

from λ-terms to P-terms, inductively defined in Figure 1 and Figure 2. In [22]
it is proved the soundness results mentioned in the introduction, as well as the
computational interpretation of Dialectica, together with the proof of the fact
that such transformation only depends on the equational semantics classes in P.

The ambient setting We fix a model C of classical Differential Linear Logic
as the ambient where the constructions of this section will take place, i.e. C
is left-additive enriched over commutative monoids (we use 0,+ for the oper-
ations on the homsets) endowed with: a symmetric monoidal closed structure
(⊗, 1), whose exponential objects we denote [A ⊸ B] and evaluation arrows
ev : [A ⊸ B] ⊗ A ⊸ B, finite biproducts (&,⊤), a strong monoidal comonad
(! : C → C, d :!→ id, p :!→!!) (resp. called bang, dereliction, digging) and natural
transformations c :! →!⊗! (contraction) and w :! →!⊤ (weakening) making it a
storage modality, isomorphisms !A⊗!B ≃!(A&B) and 1 ≃!⊤ making C Seely, a
natural transformation d : id→! (codereliction), making C differential storage, an
involutive functor (_)

⊥
: Cop → C making C ⋆-autonomous and a natural bijec-

6 D. Barbarossa

tion χ : C(D⊗E,F) ≃ C(D, [F⊥ ⊸ E⊥]). This means that a series of equations
are required, for which we refer to the standard references. We systematically
use the notation A ⊸ B for arrows in C.

It is well-known that with the above data one can also define natural trans-

formations c :!⊗! →! (cocontraction), w :!⊤ →! (coweakening) and ∂ : id⊗!
d⊗1
⊸

!⊗!
c
⊸! (deriving transformation), and set the differential of f :!A ⊸ B in C

be ∂f := A⊗!A
∂
⊸!A

f
⊸ B. It is well-known that the coKleisli C! (same ob-

jects as C and C!(A,B) := C(!A,B), representing non-linear arrows) is a Carte-
sian closed differential category. We systematically use the notation A → B
for arrows in C!. Its products are A × B :=!A⊗!B ≃!(A&B), its exponen-
tial objects [A → B] := [!A ⊸ B] and the differential of f ∈ C!(A,B) in
C! is Df := d ⊗ 1; ∂f ∈ C!(A × A,B). For f : A → B we have its promo-

tion f ! :=!A
p
⊸!!A

!f
⊸!B. For (finitely many) elements ai : ⊤ → Ai of Ai

(notation: ai : Ai) and f :
∏

i Ai → B, we define the element f(a) : B as

1
≃
⊸

⊗
i 1

⊗
i a

!
i

⊸
⊗

i!Ai

f
⊸ B. For f : A → B we call its pushforward the arrow

f∗ : A
λ∂f→ [A ⊸ B] and f∗a : A

λ−1(f∗(a))
⊸ B its pushforward at a : A. Finally,

for f : A ⊸ [E ⊸ F] and e : E, we let f
∣∣
e
:= A

≃
⊸ A⊗ 1

1⊗e
⊸ A⊗ E

λ−1f
⊸ F .

2.2 Relating Dialectica and Reverse Differentials

We fix now an interpretation of ground simple types in C extended in the canon-
ical way to all simple types (we still write A for the interpretation of the simple
type A in C). Taking inspiration from [16], we define two logical relations ∼ and
▷◁ relating a closed Dialectica-transformed program of P (i.e. the image of a
proof under Dialectica) with arrows of the suited type in the ambient.

Definition 1. Given, for any ground type α and simple type A, two relations
∼α⊆ {⊢P M : α} × C!(⊤, α) and ▷◁Aα⊆ {⊢P M : α → MA} × C!(A,α) ×
C(α⊥, A⊥), we lift them at all simple types B in order to get relations

∼B ⊆ {⊢P M : W (B)} × C!(⊤, B)
▷◁AB ⊆ {⊢P M : C(B)→M[C(A)]} × C!(A,B)× C(B⊥, A⊥)

by mutual induction on B as follow (the only case is B = E → F):

– for ⊢P M : (W (E) → W (F))× (W (E)× C(F) →M[C(E)]) and f : [E →
F], we set M ∼E→F f iff for all H ∼E e, we have

M1H ∼F f
∣∣
e
: F λπ.M2⟨H,π⟩ ▷◁EF

(
λ−1f : E → F

((λ−1f)∗e)
⊥
: F⊥ ⊸ E⊥

)
– for ⊢P M : W (E)×C(F)→M[W (A)], f : A→ [E → F], g : [E → F] ⊸ A,

we set M ▷◁AE→F (f, g) iff for all H ∼E e, we have

λπ.M⟨H,π⟩ ▷◁AF (f
∣∣
e
: A→ F , g⊥

∣∣
e

⊥
: F⊥ ⊸ A⊥).

On Dialectica and Differentiation, via Categories 7

M ∼α f

N ∼α f
(if M = N)

M ▷◁Aα (f, g)

N ▷◁Aα (f, g)
(if M = N)

G ▷◁AD (h, g) M ▷◁Dα (f, s)

λπ.(Mπ>>=G) ▷◁Aα (h!; f, s; g)
(>>=)

λπ.0 ▷◁Aα
(

f :A→α

0:α⊥⊸A⊥

) (0) M1 ▷◁Aα
(

f :A→α

g1:α⊥⊸A⊥

)
M2 ▷◁Aα

(
f :A→α

g2:α⊥⊸A⊥

)
λπ.(M1π +M1π) ▷◁Aα

(
f :A→α

g1+g2:α⊥⊸A⊥

) (+)
λπ.[π] ▷◁αα (d, 1)

(d)

M1 ∼A1 a1 : A1
(n≥1). . . Mn ∼An an : An

λπ.[⟨M1, . . . ,Mn, π⟩] ▷◁Aα
(evala:[A1→[A2→···→[An→α]]]→α

((evala)∗0)
⊥:α⊥⊸[[[α⊥⊸A⊥

n]⊸A⊥
n−1]⊸...⊸A⊥

1]

) (eval)

Fig. 3. In (eval), we let evala : [A1 → [A2 → · · · → [An → B]]] → B be the composition

[1, n]
d→ [1, n]

1A1

∣∣∣∣
a!
1→ [2, n] → · · · → [n, n]

1An

∣∣∣∣
a!n→ B, where we put [i, n] := [Ai →

[Ai+1 → · · · → [An → B]]].

The acquainted differential λ-calculist could relate the arrows in Definition 1
and the terms of [16, Def. 4.8], putting the appropriate duality. In Proposition 1
we show in which sense the two constructions are equivalent. But (one of) the
point of our definition is explicit these constructions using the familiar operations
of pushforwards and dual maps. Finally, remembering cotangent spaces and their
dependently typed nature, the g in M ▷◁AB (f, g) should really be understood as
g : T ∗

f(a)B ⊸ T ∗
aA, for an a ∈ A.

Lemma 1. Suppose ∼α, ▷◁
A
α are closed w.r.t. the rules of Figure 3. Then the

same holds for ∼B and ▷◁AB for all simple type B.

Proof. Each rule is proved separately by induction on B, except rules (ev) and
(d) which are proved by mutual induction on B. The lift of the compatibility
with equational equivalence is immediate. The others are all straightforward
using the equational semantics of P [16, Def. 4.1] and equations which hold in C:
(0) uses 0⊥ = 0. (+) uses (f + g)

⊥
= f⊥ + g⊥, λ−1(f + g) = λ−1f + λ−1g and

f ; (g + h) = f ; g + f ;h. (>>=) uses (h!; f)
∣∣
e
= h!; f

∣∣
e

and (s; g)
⊥
∣∣∣
e

⊥
= s⊥

∣∣
e

⊥
; g.

(d) uses the inductive hypothesis on (eval) and evale = d
∣∣
e
. (eval) uses the fact

that evala
∣∣
e
= evala,e.

For f :
∏

i Ai → B and ai : Ai for i = 1, . . . , j − 1, j + 1, . . . , n, we let

f j
a :=!Aj ≃

⊗j−1
1 1⊗ !Aj ⊗

⊗n−j
1 1

⊗
i a

!
i⊗1⊗

⊗
i a

!
i

⊸
⊗

i!Ai

f
⊸ B.

Remembering that, with the notations of the following lemma, c; (p⊗ q!); ev
is the composition of p and q in C!, the statement expresses the chain rule in
its pushforward form1. The acquainted differential λ-calculist will notice that it
precisely corresponds to the definition of the linear substitution of an application.

1 The usual undergraduate chain rule is obtained when p does not depend on Aj .

8 D. Barbarossa

Lemma 2. Let p :
∏

i Ai → [E → F] and q :
∏

i Ai → E. Let us momentarily

write q ;! p :=
∏

i Ai

c
⊸

⊗
i!Ai⊗

⊗
i!Ai

p⊗q!

⊸ [E → F]⊗!E
ev
⊸ F . Fix j and ai : Ai.

In C we have: ((q ;! p)
j
aj)∗aj = (pjaj)∗aj

∣∣∣
q(a)

+ ((qjaj)∗aj ; (λ
−1(p(a)))∗q(a)).

From now on, we fix an interpretation J·K : STλC → C! and ground relations
∼, ▷◁ satisfying the hypotheses of Lemma 1.

Theorem 1. Let f := Jx : A1, . . . , x : An ⊢Λ M : BK :
∏n

i=1 Ai → B.
For all ⊢Λ Ni : Ai and ai : Ai s.t. Ni ∼Ai ai (i = 1, . . . , n), setting

a := a1, . . . , an and aj := a1, . . . , aj−1, aj+1, . . . , an, we have:

1. M•{N/x} ∼B f(a).
2. If 1 ≤ j ≤ n ̸= 0, the following rule is admissible for all simple type Y :

G ▷◁YAj
(h :!Y ⊸ Aj , g : A⊥

j ⊸ Y ⊥)

λπ.((Mxj{N/x})π>>=G) ▷◁YB (h!; f j

aj :!Y ⊸ B , ((f j

aj)∗aj)
⊥
; g : B⊥ ⊸ Y ⊥)

Proof. Induction on M . Call (IH1), (IH2) the inductive hypotheses for claim 1,2.

Case M = xi. Then f = πi.
1). Our goal becomes Ni ∼Ai

ai which is in our hypotheses.
2). If j = i, we have f j

aj = dAj
and one can show that (f j

aj)∗aj = d∗aj = 1.
Our goal then becomes G ▷◁YAj

(h, g), which is precisely the premise of our
rule. If j ̸= i, We have f j

aj = w!
Aj

; ai and one can show that (f j
aj)∗aj =

(w!
Aj ; ai)∗aj = 0. Our goal then becomes λπ.0 ▷◁YAi

(h!; f j
aj , 0), which is

given by (0).
Case M = λy.Q, B = E → F . Then there is λ−1f = Jx : A, y : E ⊢Λ Q : F K.

1). We have to show that, given H ∼E e, we have both Q•{N/x, H/y} ∼F

f(a)
∣∣
e

and Qy{N/x, H/y} ▷◁EF (λ−1(f(a)) , ((λ−1(f(a)))∗e)
⊥
). The for-

mer is given by (IH1), since f(a)
∣∣
e
= (λ−1f)(a, e). For the latter we have

Qy{N/x, H/y} = λρ.(Qy{N/x, H/y}ρ>>=λη.[η]) so, using rule (d), this is
precisely given by (IH2), since d!E ; (λ

−1f)n+1
a = λ−1(f(a)).

2). Given G ▷◁YAj
(h :!Y ⊸ Aj , g : A⊥

j ⊸ Y ⊥) and H ∼E e, putting P :=

Mxj
{N/x})π>>=G, our goal is: P̃ ▷◁YF ((h!; f j

aj)
∣∣∣
e
, (((f j

aj)∗aj)
⊥
; g)

⊥
∣∣∣∣
e

⊥

),

where we put P̃ := λρ.(λπ.P)⟨H, ρ⟩. Since P = (λy.Qxj{N/x})π1π2>>=G, we
have P̃ = λρ.(λπ.P)⟨H, ρ⟩ = λρ.(Qxj{N/x, H/y}ρ>>=G). Now, by (IH2) on

Q with (G, h, g), we precisely obtain P̃ ▷◁YF (h!; (λ−1f)jaj ,e , (((λ
−1f)jaj ,e)∗

aj)
⊥
; g).

To conclude, one can see that (h!; f j
aj)

∣∣∣
e
= h!; f j

aj

∣∣∣
e
= h!; (λ−1f)jaj ,e and

((f j
aj)∗aj)

∣∣∣
e
= ((λ−1f)jaj ,e)∗

aj as well as (((f j
aj)∗aj)

⊥
; g)

⊥
∣∣∣∣
e

⊥

= ((f j
aj)∗aj)

∣∣∣
e

⊥
; g.

On Dialectica and Differentiation, via Categories 9

Case M = PQ. Then f = c; (p⊗ q!); ev, where p = Jx : A ⊢Λ P : E → BK and
q = Jx : A ⊢Λ Q : EK.
1). Since one sees that f(a) = p(a)

∣∣
q(a)

, our goal becomes showing that
(P •{N/x})1(Q•{N/x}) ∼B p(a)

∣∣
q(a)

. But (IH1) on P gives (P •{N/x})1H ∼B

p(a)
∣∣
e

for all H ∼E e, and (IH1) on Q gives Q•{N/x} ∼E q(a), so we are
done.
2). Given G ▷◁YAj

(h :!Y ⊸ Aj , g : A⊥
j ⊸ Y ⊥), let R := λη.((Qxj{N/x}η)>>=G),

P̃ρ := (Pxj
{N/x}⟨Q•{N/x}, ρ⟩)>>=G and Q̃ρ := (P •2{N/x}⟨Q•{N/x}, ρ⟩)>>=R.

Now our goal is: λπ.((λρ.P̃ρ)π+(λρ.Q̃ρ)π) ▷◁
Y
B (h!; f j

aj , ((f j
aj)∗aj)

⊥
; g). By

(+) and Lemma 2, it is enough showing that λρ.P̃ρ ▷◁YB (h!; f j
aj , (p

j
aj)∗aj

∣∣∣
q(a)

⊥
; g)

and λρ.Q̃ρ ▷◁YB (h!; f j
aj , ((λ

−1(p(a)))∗q(a))
⊥
; ((qjaj)∗aj)

⊥
; g). For the for-

mer, remark that IH1 on Q entails Q•{N/x} ∼E q(a). So one can see that

IH2 on P precisely gives λρ.P̃ρ ▷◁YB ((h!; pjaj)
∣∣∣
q(a)

, (((pjaj)∗aj)
⊥
; g)

⊥
∣∣∣∣
q(a)

⊥

),

and it is easy to see that we obtained the desired pair of arrows. For the
latter, on the one hand we notice that, by IH2 on Q, we have R ▷◁EB

(h!; qjaj , ((qjaj)∗aj)
⊥
; g). On the other hand, by IH1 on P , for all H ∼E e we

have λπ.P •2{N/x}⟨H,π⟩ ▷◁EB (λ−1(p(a)) , ((λ−1(p(a)))∗e)
⊥
). Now, we al-

ready remarked some lines above that Q•{N/x} ∼E q(a), thus putting S :=

λπ.P •2{N/x}⟨Q•{N/x}, π⟩, we have S ▷◁EB (λ−1(p(a)) , ((λ−1(p(a)))∗q(a))
⊥
).

But by rule (>>=) on R and S, we obtain λρ.(Sρ>>=R) ▷◁YB ((h!; qj
aj)

!
;λ−1(p(a)) ,

((λ−1(p(a)))∗q(a))
⊥
; ((qjaj)∗aj)

⊥
; g). Now since Sρ>>=R = Q̃ρ, one concludes

by checking that (h!; qjaj)
!
;λ−1(p(a)) = h!; f j

aj .

Corollary 1. Under the same hypotheses of Theorem 1(2), we have

Mxj
{N/x} ▷◁AB (f j

aj : Aj → B , ((f j
aj)∗aj)

⊥
: B⊥ ⊸ A⊥

j).

Proof. Immediate using rule (d) as premise of the rule in Theorem 1(2).

Remark 2. For x : A ⊢Λ M : B, the results above say that (λx.M)
• ∼A→B JMK

and (λx.Mx)N ▷◁AB (JMK, (JMK∗a)
⊥
) for all N ∼A a. Remembering the reverse

differential RJMK : (a,w) ∈ JMK∗T ∗B 7→ (a, (JMK∗a)
⊥
w) ∈ T ∗A of JMK, we can

read it by saying that λx.Mx “represents” RJMK. Working out a dependently
typed framework in which this makes a precise sense is a very interesting goal.

The previous two results and the remark above express the Dialectica as a
differentiable program transformation in a categorical way, hopefully clarifying
even more the content of [16, Theorem 4.10] and the constructions involved
(compare also [16, Fig. 6] with our Definition 1).

Remark 3. ∼ can be thought of as a “proof relevant” realisability relation: not
only we realise a formula B with P-terms (the M ’s such that M ∼B f , for some

10 D. Barbarossa

M ∼B JSK

M
∂λ∼B S

(1)
M ▷◁AB (f, JSK⊥)

M
∂λ
▷◁

A

B S

(2)
M

∂λ∼B S

M ∼B JSK
(3)

M
∂λ
▷◁

A

B S JSK = f∗a

M ▷◁AB (f, JSK⊥)
(4)

Fig. 4. From [16, Def. 4.8] to our Definition 1, and vice versa. We mean by ∂λ∼ ,
∂λ
▷◁ the

relations in [16, Figure 6]. The careful reader would notice that, rigorously speaking,
one needs to slightly modify the term M when passing from the formulation in [16] and
ours, because of the modifications mentioned at Figure 2. We leave it implicit since it
is easy to recover this by following the types in Figure 1.

f : B), but we also cluster such realisers into classes whose terms realise a certain
element f : B (the statement that M ∼B f). Theorem 1 becomes then the usual
adequation theorem for realisability: a proof ⊢Λ M : B gives a realiser M• of B,
plus the information that the realiser also realises JMK itself. Dialectica is thus
the program extraction transformation for such notion of realisability.

As previously mentioned, the following result explains the relation between
[16, Def. 4.8] and our Definition 1: the latter appears slightly more general than
the former, due to the supplementary hypothesis on C needed to have an equiv-
alence.

Proposition 1. Let J_K be an interpretation ST∂λC → C!. Suppose that the
rules of Figure 4 hold when B is a ground type.

If J_K is full complete (i.e. surjective on all homsets), then the rules lift to
all B simple type and, moreover, [16, Theorem 4.10] follows from our Theorem
1 using (1), (2), and our Theorem 1 follows from theirs using (3), (4).

Proof. By straightforward mutual induction on B. We do not give the details
because it involves the relation in [16] which we did not report here. The re-
quirement that J_K be full complete is used in the case of (3) and (4).

Remark 4. From Figure 4 one sees that the formulation of the relations using the
differential λ-calculus given in [16], explain the reverse differentiation content of
Dialectica within a forward differentiation setting. In the absence of a reverse
differential λ-calculus or Cartesian closed reverse differential categories (more on
that in the final Section 4), our categorical setting allows to explain it within
a setting in which one can explicitely talk about reverse differentiation, even
though we still start from a forward setting. See also Remark 7.

3 Differentiation, from Dialectica Categories to Lenses

As we have seen in the previous section, Dialectica can be read as a program
transformation which mimics the construction of the reverse differential of a mor-
phism. Another way of formulating Dialectica in a categorical way is by means
of Dialectica Categories [10]. The departing point of this section is the relation
between the latter and the (categorical) notions of (reverse) differentiation.

We fix for all this section a category L with pullbacks.

On Dialectica and Differentiation, via Categories 11

Notations We denote2 with A
f∗p← f∗β

f→ β the pullback of a diagram A
f→

B
p← β. The notation is inspired by the canonical example of category with

pullbacks that we have in mind, that is the category SMan of smooth manifolds
and smooth maps. In this case the pullbacks always exist and one thinks of p
as a fiber bundle over B, its pullback f∗β being the fibre bundle obtained by
the disjoint union of the fibres of p with the appropriate topology which makes
it a differential manifold (together with its projection map f∗p) and f uniquely
determining f .

For example, the span A
p← α

1→ α is always the pullback of the diagram
A

1→ A
p← α. With our notations, we have thus (1A)

∗
α = α, 1A = 1α and

(1A)
∗
p = p. Similarly, the span A

1← A
h→ B is always the pullback of the

diagram A
h→ B

1← B. With our notations, we have thus h∗B = A, h = h
and h∗1A = 1B . As another example, in any category with products ×, one
can always take the pullback of a projection along any arrow: the pullback of
A

f→ B
π1← B×Y is given by f∗(B × Y) = A×Y , f∗πB,Y

1 = πA,Y
1 and f = f×1Y .

Finally, we denote a subobject a of an object A in a category by the abuse
of notation a

a
↣ A. We thus mean the equivalence class of the mono a to A.

Definition 2. The Dialectica Category [10] Dial(L) over L is made of:
Objects are the data of two objects A,X in L and a subobject a ↣ A×X in

L (in Set, a is just a subset of A × X, playing the role of a formula with two
free variables, e.g. a binary predicate).

An arrow from (A,X, a) to (B, Y, b) is the data of an f : A → B and a
F : A × Y → X in L such that given the following diagram of pullbacks, there
exists exactly one dotted arrow making the triangle commute:

b∗(A× Y) ⟨π1, F ⟩∗a

b A× Y a

B × Y A×X

b∗(f×1) b⌟ ⟨π1,F ⟩∗a ⟨π1,F ⟩⌟

b f×1 ⟨π1,F ⟩ a

In Set, this reads as: (f(a), y) ∈ b for all (a, y) ∈ A× Y s.t. (a, F (a, y)) ∈ a.
The identity on (A,X, a) is (1A, π

A,X
2) (this is an arrow precisely because a

is mono) and the composition (f, F); (g,G) is (f ; g, ⟨π1, (f × 1);G⟩;F). One can
immediately see that this is the same arrow given in [10, Proposition 1].

Remark 5. In a setting where tangent and cotangent spaces are isomorphic, the
typing of F in the previous definition is precisely that of the reverse differential
of f . It is thus natural to wonder if that analogy can be pushed further and in-
deed also the composition in such category corresponds to the composition rule

2 Remark that we make some standard abuse of notation here: the object f∗β also
depends on the arrow p, not only on its source β and f , and the same for f .

12 D. Barbarossa

for reverse differentials. As we will see, this happens because (a very special sub-
category of) Dialectica categories can be put in relation with (dependent) lenses
(Proposition 5), and the latter is a general framework to talk about constructions
such as reverse differentiation (Section 3.3). Contrarily to the typing of F and
its composition, the condition involving subobjects in the definition of an arrow
of Dial(L) is not immediately clear in geometric terms. In fact, we will actually
get rid of it in the following (e.g. Proposition 6, Corollary 3), as it appears not
necessary in order to link Differential categories and Dialectica categories, and
this will allow us to generalise it in Section 3.3. It may seem strange that we
get rid of such very peculiar aspect of Dialectica; but we can understand this
by looking at the computational formulation of Dialectica in P: the subobjects
(i.e. the formulas) are not there anymore, because their role (which is that of an
orthogonality relation, see [23, Section 8.3.2 and 9.1.4]) is already subsumed and
encoded by the witnesses (W) and counters (C), as shown by the soundness of
the transformation with respect to them.

Lenses For the purpose of this paper, we take the following:

Definition 3. The category Lens(L) of lenses over L is defined as follows:
objects: arrows in L, which we think as fibre bundles and we write p :

(
α
A

)
instead of p : α→ A;

arrows from p :
(
α
A

)
to q :

(
β
B

)
are the data of both a f : A → B in L and a

span α
F← f∗β

f→ β in L, where f is part of the following pullback square in L,
and such that the left triangle commutes:

α f∗β β

A B

p

F f

f∗q
⌟

q

f

The identity on p :
(
α
A

)
is given by 1A and the identity span α

1← α
1→ α. Com-

position is given by pairwise composition in L and composition in the category
Span(L) of spans on L. One can check that these data satisfy the conditions for
being arrows in Lens(L).

Proposition 2. Lens(L) is indeed a well-defined category.

Proof. The only non trivial part is that our composition gives indeed an arrow of
our claimed category, and that our claimed identity is indeed such. In both cases,
the argument is similar to the pasting law for pullbacks. For the composition,
one sees that our definition claims to take the composition p :

(
α
A

) (f,F)→ q :(
β
B

) (g,G)→ r :
(
γ
C

)
to be (f ; g, α

f
∗
G;F←− f

∗
g∗γ

f ;g−→ γ). To show that this is indeed
an arrow in our claimed category, we consider the left diagram in Figure 5,
which is read as follows: given the blue and purple pullbacks, and given the

On Dialectica and Differentiation, via Categories 13

P

f
∗
g∗γ

f∗β g∗γ

α β γ

A B C

f
∗
G

f⌟

F f

f∗q

⌟
G g

q∗r

⌟

p q r

f g

f∗β = f
∗
β β

f∗β β

A B

f=f

1=f
∗
1

⌟
1

f

f∗p
⌟

p

f

Fig. 5. Lens(L!) is a category. Left: diagram for composition; right: for identities.

composition span (which is defined via the black pullback), in order to show

that our composition is well defined, we show both that A
f
∗
G;f∗q←− f

∗
g∗γ

f ;g−→ γ

is the pullback of A
f ;g−→ C

r← γ and that f
∗
G;F ; p = f

∗
G; f∗q. The latter is

immediate (because (f, F) is an arrow). For the former, the commutation is
immediate (because (g,G) is an arrow), and given the two orange arrows, one
obtains the unique squiggly red arrow by first obtaining the unique dotted red
arrow (using the purple pullback), then obtaining the unique dotted arrow (using
the blue pullback), and finally the desired one (using the black pullback). For
identities, one uses the fact that, because Span(L) is a category, the upper square
of the right diagram of Figure 5 is a pullback as soon as the bottom one is.

Remark 6. The previous definition is basically that of dependent lenses. While
writing this paper, we found that in the preprint [25, Example 3.7], it has been
remarked that those are related with reverse differentiation. In another recent
preprint [24, Page 6] one finds our diagram above, but it only appears in the con-
text of polynomial functors. However, no relation with Dialectica nor (reverse)
differential/tangent categories has been explicitly made. Summing up, while the
point we want to make will probably not surprise the expert “Lens-theorist”,
we think that it is important to clearly state the links with other recent topics,
namely (reverse) Differential/Tangent categories, and older ones like Dialectica
categories, which we propose to do in this section.

Definition 4. Let ELens(L) be the full subcategory of Lens(L) of trivial bundles,
i.e. first projections. Concretely:

– Objects are first projections π1 :
(
A×X
A

)
– An arrow from π1 :

(
A×X
A

)
to π1 :

(
B×Y
B

)
is given by an f : A → B and a

span A×X
F←− A× Y

f×1−→ B × Y such that F ;πA,X
1 = πA,Y

1 .

The definition above does make sense: the span satisfies the pullback condi-
tion of Lens(L) so that the arrows above are arrows in Lens(L), and the iden-
tities and composition are inherited from Lens(L). The only non-trivial part

14 D. Barbarossa

P

A× Z

A× Y B × Z

B × Y

A B

⟨h1;π1,h2;π2⟩h1 h2

⟨π1,(f×1);G;π2⟩ f×1⌟

f×1

π1

G

π1

π1

f

Fig. 6. Figure of Lemma 3.

is to justify that the arrows above are closed w.r.t. composition in Lens(L):
this follows by the following Lemma 3, which ensures that the composition
π1 :

(
A×X
A

) (f,F)→ π1 :
(
B×Y
B

) (g,G)→ π1 :
(
C×Z
C

)
in Lens(L) of two arrows of

ELens(L) is given by the following pair, which is clearly an arrow of ELens(L):

(f ; g , A×X
⟨π1,(f×1);G;π2⟩;F←− A× Z

(f ;g)×1−→ C × Z).

We let the “E” in “ELens(L)” stand for “Euclidean”.

Lemma 3. In a category with products, given a commutative square and a tri-
angle as the ones in purple in Figure 6, the pullback of the diagram A× Y

f×1−→
B × Y

G←− B × Z is the black one in the same figure.

3.1 Dialectica and Euclidean-lenses

The structure of Euclidean-lenses is well-suited to shape the Dialectica transfor-
mation in P: let Λcat and Pcat be the categories induced by the simply-typed
λ-calculus and P as usual, i.e. whose objects are types, an arrow from A to B
is the equational semantics class of a term z : A ⊢ M : B, the identities are
variables and composition is substitution. Now, Pcat does not have pullbacks in
general, but we can still define the category ELens(Pcat) over it, exactly as in
Definition 4 (ignoring that it is a subcategory of a whole category of lenses).
With this, by looking at Figure 7, we can prove:

Proposition 3. We have a functor Λcat → ELens(Pcat) defined as follows:

– An object A is sent to (z : W (A)×M[C(A)] ⊢P z1 : W (A));
– An arrow (z : A ⊢Λ M : B) in Λcat from A to B is sent to the arrow in
ELens(Pcat) from (z : W (A) ×M[C(A)] ⊢P z1 : W (A)) to (z : W (B) ×
M[C(B)] ⊢P z1 : W (B)) given by (z : W (A) ⊢P M• : W (B)) and the span:

W (A)×M[C(A)]
⟨z1, z2>>=M(z1)⟩←− W (A)×M[C(B)]

⟨M•, z2⟩−→ W (B)×M[C(B)].

On Dialectica and Differentiation, via Categories 15

W (A)×M[C(A)] W (A)×M[C(B)] W (B)×M[C(B)]

W (A) W (B)
z1

⟨z1, z2>>=M
(z1)

⟩ ⟨M•, z2⟩

z1 z1

M•

⌟

Fig. 7. One can check that, in Pcat, the square is a pullback and the triangle commutes.

Proposition 4. We have a functor G : ELens(L)→ Dial(L) defined as follows:

– An object π1 :
(
A×X
A

)
is sent to (A,X, 1A×X) (here we see that we only use

the full subobject, so we actually use a strict subcategoy of Dial(L));
– An arrow (f : A→ B , A×X F←− A×Y f×1−→ B×Y) from π1 :

(
A×X
A

)
to π1 :

(
B×Y
B

)
is sent to (f, F ;π2) from (A,X, 1A×X) to (B, Y, 1B×Y).

One uses the trivial pullbacks of B×X
1→ B×X

f×1← A×X and A×Y
⟨π1,F ;π2⟩→

A×A
1← A×A in order to see that G(f, F) is an arrow of Dial(L).

Proposition 5. The functor G : ELens(L)→ Dial(L) is an isomorphism of cat-
egories on its image, which is the following full subcategory EDial(L) of Dial(L):
– Objects are given by full subobjects (A,X, 1A×X)
– An arrow from (A,X, 1A×X) to (B, Y, 1B×Y) is given by arrows f : A→ B

and F : A × Y → X (no condition is required here because the Dialectica
condition becomes trivially satisfied for full subobjects).

The inverse G−1 : EDial(L)→ ELens(L) of G is given as follows:

An object (A,X, 1A×X) is sent to πA,X
1 .

An arrow (f : A→ B, F : A× Y → X) from (A,X, 1A×X) to (B, Y, 1B×Y) is

sent to (f , A×X
⟨π1,F ⟩←− A× Y

f×1−→ B × Y) from πA,X
1 to πB,Y

1 .

Proof. The fact that EDial(L) is a subcategory of Dial(L) is immediate to check.
In order to show that G−1((f, F); (g,G)) = G−1(f, F);G−1(g,G) one uses the
fact that ⟨πA,Z

1 , (f × 1Z);G)⟩; ⟨πA,Y
1 , F ⟩ = ⟨πA,Z

1 , ⟨πA,Z
1 , (f × 1Z);G⟩;F ⟩, which

can be immediately checked. In order to see that (G;G−1)(f, F) = (f, F). one
uses the fact that F ;π1 = π1, which is given by the definition of Lens(L).
Corollary 2. Composing Propositions 3, 5, one has a functor Λcat → EDial(Pcat)
sending A to (W (A), C(A), 1) and (x : A ⊢Λ M : B) to the pair given by
x : W (A) ⊢P M• : W (B) and z : W (A) ×M[C(B)] ⊢P z2>>=M(z1) :M[C(A)].
If we let z := ⟨x, [y]⟩ and remember that y /∈ Mx, then the latter term becomes
x : W (A) ⊢P Mx : C(B)→M[C(A)].

The above functor thus literally gives the Dialectica transformation in P to-
gether with its soundness Theorem mentioned in the introduction (first lines of
Page 3). If Dialectica categories mimic Dialectica, as a formulas transformation,
in categorical terms, we have here expressed Dialectica, as a program transfor-
mation, in categorical one. Even if not surprising, we think that it is instructive.

16 D. Barbarossa

3.2 Forward Differentiation and Lenses

Let us fix in this subsection a Cartesian closed differential category C! which is the
coKleisli of a category C as in Section 2. Remember that C comes with a bijection
χ : C(D⊗E,F) ≃ C(D, [F⊥ ⊸ E⊥]). We use it to define the reverse differential

of f :!A → B in C as ρf :=!A ⊗ B⊥ λ−1χ∂f
⊸ A⊥, and the reverse differential

Rf ∈ C!(A×B⊥, A⊥) of f in C! as !(A&B⊥) ≃!A⊗!(B⊥)
1⊗d
⊸ !A⊗B⊥ ρf

⊸ A⊥.

Proposition 6. We have a functor D : C! → ELens(C!) defined by:

A 7→ π1 :
(
A×A⊥

A

)
A

f→ B 7→ (f , A×A⊥ ⟨π1,Rf⟩←− A×B⊥ f×1−→ B ×B⊥).

The statement is analogous to [16, Proposition 5.7], and so is its proof. We
will prove a similar result in Proposition 7. We immediately have:

Corollary 3. The functor in [16, Proposition 5.7] is actually the composition

C!
D→ ELens(C!)

G≃ EDial(C!) ↪−→ Dial(C!).

This also shows, as we anticipated in Remark 5, we do not need all the power
of Dialectica categories, i.e. the possibility of taking subobjects, in order to make
a link with differentiation: we are only using its Euclidean-lens structure.

Remark 7. Remembering Remark 4 and Figure 4, one sees that the passage from
M

λ∂
▷◁ S to M ▷◁ S contains the same information as the functor D, both building

the reverse differential of f , in the same way as the functor in Proposition 3.

3.3 Reverse Differentiation and Lenses

On the same spirit of Proposition 6, one should be able define a functor starting
from a reverse tangent category. Let us first immediately see the case with trivial
cotangent bundles, i.e. that of reverse differential categories (see [9, Example 28]):

Proposition 7. Let L a Cartesian reverse differential category ([4, Definition
13]). We have a functor T ∗ : L → ELens(L) defined by:

A 7→ π1 :
(
A×A
A

)
A

f→ B 7→ (f , A×A
⟨π1,Rf⟩←− A×B

f×1−→ B ×B)

where Rf : A×B → A in L is the reverse differential of f (which is a primitive
data in L). Therefore, we also have a functor T ∗;G : L → Dial(L), factorising
the very last lines of [16] as for Corollary 3.

Proof. By diagram chasings. For the composition one reasons on Figure 8.

On Dialectica and Differentiation, via Categories 17

A× C

A×B B × C

A×A B ×B C × C

A B C

⟨π1,(f×1C);Rg⟩
f×1⌟

⟨π1,Rf⟩ f×1

π1

⌟
⟨π1,Rg⟩ g×1

π1

⌟

π1 π1 π1

f g

Fig. 8. Diagram for the proof of Proposition 7.

Let us now consider reverse tangent categories [9, Definition 24], whose canon-
ical example is SMan ([9, Example 27]). Such a category L is, broadly speaking,
a tangent category L, i.e. a differential category with non-trivial tangent bundles
pA :

(
TA
A

)
[9, Definition 1], equipped with: a full subcategory DBunD(L) of L

of differential bundles which behave like cotangent bundles ([9, Definition 16]);
its canonical fibration DBunD(L) → L and dual fibration DBun◦D(L) → L ([9,
Propositions 17, 21]); an involutive fibration morphism DBunD(L)→ DBun◦D(L)
giving the dual bundle p∗ :

(
α∗

A

)
of a differential bundle p :

(
α
A

)
[9, Definition 23].

Proposition 8. Let L be a reverse tangent category. We have a functor T ∗ :
L → Lens(L) defined by:

A 7→ p∗A :
(
T∗A
A

)
A

f→ B 7→ (f , T ∗A
T∗f←− f∗T ∗B

f−→ T ∗B)

where p∗A is the dual of the tangent bundle on A, f is part of the pullback square
in L below and (f, T ∗f) is the image of (f, Tf) under the involution of L ([9,
Definition 23]), where (f, Tf) is defined in [7, Example 2.4(ii)].

T ∗A f∗T ∗B T ∗B

A B
p∗
A

T∗f f

f∗p∗
B

⌟
p∗
B

f

Remark that the left triangle above commutes because because of [9, Proposition
21.(ii).(3), left diagram], so the functor T ∗ is well defined in Lens(L).
Remark 8. Actually, the point of a reverse tangent category, is that in it one
can always define a reverse tangent bundle functor T ∗ : L → DBun◦D(L) as
in [9, Definition 25]. Now, one can think of DBun◦D(L) as a subcategory of
Lens(L) (just consider the left diagram of [9, Proposition 21.ii(3)], i.e. ignore
the differential bundle part): composing with the inclusion we immediately get
the functor above. In conclusion if, after [9], Proposition 8 is not a surprise, the
point we are making here is that this is the direct generalisation of the functor
in [16, Proposition 5.7], something which was not remarked there.

18 D. Barbarossa

4 Conclusions and future work

We took a categorical point of view on the relation between Dialectica and (re-
verse) differentiation; we did this by defining two logical relations (Definition 1)
between the target language of the Dialectica transformation of simply-typed
λ-terms, and arrows in an opportune class of differential categories. We showed
that, on the image of the transformation, such relations perform reverse differen-
tiation (Theorem 1, Corollary 1). We then investigated reverse differentiation in
terms of lenses; we did this by considering reverse differential and tangent cate-
gories (Proposition 6, 7 8); we have also factored the functor in [16, Proposition
5.7] by remarking that it only uses a subcategory of the Dialectica category not
involving non-trivial subobjects (Corollary 3), which can be seen as a subcate-
gory of lenses (Proposition 5). Finally, we have seen how the same categorical
structure shapes Dialectica as a program transformation (Proposition 3, Corol-
lary 2). This point of view opens many natural and interesting future work:

1. As already pointed out in Remark 4, the first natural question is to ex-
press Definition 1 in a reverse differential category. This should be definitely
possible, but the category should be Cartesian closed in order to interpret
λ-calculus, and this has not been explored in the literature yet.

2. Related with the previous point is that of defining a “reverse differential
λ-calculus. One could then formulate Definition 1 in order to relate it to
Dialectica in a syntactic way. In a sense, such language already appears in
the preprint [20], where the authors introduce a language precisely defined
with the model of pullbacks of differential 1-forms in mind. A natural goal
is therefore to express Dialectica within such calculus.

3. Remembering Remark 7, an interesting question is whether one can lift the
relations in Definition 1 to dependently typed languages (or different logical
systems). The natural starting point would be [22,23], where it is shown how
to formulate Dialectica for dependent types. This would require both linear
and dependent types and, on the categorical side, Cartesian closed reverse
tangent categories which, again, have not been explored in the literature yet.

4. In our work there is a clear distinction between linear and non-linear arrows,
handled by the use of models of differential linear logic on the lines of [12].
However, in the Cartesian closed case, this does not include geometrical
models like SMan. The recent setting of linearly closed reverse differential
categories of [19] allows to keep geometric examples while still being able to
(un)curry linear maps. Can Sections 2 and 3 be phrased within it?

5. In Subsection 3.3 we considered the lens structure from a differential one.
Can one conversely build a differential structure from a lens/Dialectica one?

6. In Section 3, the main point is really to have a functor L → Lens(L). Are
reverse tangent categories the only ones admitting such functors?

Acknowledgments. Thanks to Thomas Powell for many instructive discussions about
Dialectica. This work has been funded by the Engineering and Physical Sciences Re-
search Council (EPSRC) project “Imperative programs from proofs” (EP/W035847/1).

On Dialectica and Differentiation, via Categories 19

References

1. Avigad, J., Feferman, S.: Chapter V - Gödel’s Functional (“Dialectica”) Interpreta-
tion. In: Buss, S.R. (ed.) Handbook of Proof Theory, Studies in Logic and the Foun-
dations of Mathematics, vol. 137, pp. 337–405. Elsevier (1998). https://doi.org/
https://doi.org/10.1016/S0049-237X(98)80020-7, https://www.sciencedirect.com/
science/article/pii/S0049237X98800207

2. Blute, R., Cockett, J.R.B., Lemay, J.P., Seely, R.A.G.: Differential Categories Re-
visited. Appl. Categorical Struct. 28(2), 171–235 (2020). https://doi.org/10.1007/
S10485-019-09572-Y, https://doi.org/10.1007/s10485-019-09572-y

3. Capucci, M., Gavranovic, B., Malik, A., Rios, F., Weinberger, J.: On a fibrational
construction for optics, lenses, and Dialectica categories. CoRR abs/2403.16388
(2024), https://doi.org/10.48550/arXiv.2403.16388

4. Cockett, J.R.B., Cruttwell, G.S.H., Gallagher, J., Lemay, J.P., MacAdam, B.,
Plotkin, G.D., Pronk, D.: Reverse Derivative Categories. In: Fernández, M.,
Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science Logic,
CSL 2020, January 13-16, 2020, Barcelona, Spain. LIPIcs, vol. 152, pp. 18:1–
18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPICS.CSL.2020.18, https://doi.org/10.4230/LIPIcs.CSL.2020.18

5. Cockett, J.R.B., Gallagher, J.: Categorical Models of the Differential λ-Calculus
Revisited. In: Birkedal, L. (ed.) The Thirty-second Conference on the Mathematical
Foundations of Programming Semantics, MFPS 2016, Carnegie Mellon University,
Pittsburgh, PA, USA, May 23-26, 2016. Electronic Notes in Theoretical Computer
Science, vol. 325, pp. 63–83. Elsevier (2016). https://doi.org/10.1016/J.ENTCS.
2016.09.032, https://doi.org/10.1016/j.entcs.2016.09.032

6. Cockett, J., Cruttwell, G.: Differential Structure, Tangent Structure. SDG.
Appl Categor Struct 22, 331–417 (2014). https://doi.org/https://doi.org/10.1007/
s10485-013-9312-0

7. Cockett, R., Cruttwell, G.: Differential bundles and fibrations for tangent cate-
gories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 59(1), 10–92
(2018), https://arxiv.org/pdf/1606.08379

8. Cruttwell, G.S.H., Gallagher, J., Lemay, J.P., Pronk, D.: Monoidal reverse differen-
tial categories. Math. Struct. Comput. Sci. 32(10), 1313–1363 (2022). https://doi.
org/10.1017/S096012952200038X, https://doi.org/10.1017/S096012952200038X

9. Cruttwell, G.S.H., Lemay, J.P.: Reverse Tangent Categories. In: Murano, A.,
Silva, A. (eds.) 32nd EACSL Annual Conference on Computer Science Logic,
CSL 2024, February 19-23, 2024, Naples, Italy. LIPIcs, vol. 288, pp. 21:1–21:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024), https://doi.org/10.
4230/LIPIcs.CSL.2024.21

10. De Paiva, V.C.V.: The Dialectica categories. PhD thesis (1991), https://www.cl.
cam.ac.uk/techreports/UCAM-CL-TR-213.pdf

11. Diller, J.: Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik
endlicher Typen. Arch math Logik 16, 49–66 (1974). https://doi.org/https://doi.
org/10.1007/BF02025118

12. Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and
antiderivatives. Math. Struct. Comput. Sci. 28(7), 995–1060 (2018). https://doi.
org/10.1017/S0960129516000372, https://arxiv.org/abs/1606.01642

13. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci.
309(1-3), 1–41 (2003). https://doi.org/10.1016/S0304-3975(03)00392-X, https://
doi.org/10.1016/S0304-3975(03)00392-X

https://doi.org/https://doi.org/10.1016/S0049-237X(98)80020-7
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80020-7
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80020-7
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80020-7
https://www.sciencedirect.com/science/article/pii/S0049237X98800207
https://www.sciencedirect.com/science/article/pii/S0049237X98800207
https://doi.org/10.1007/S10485-019-09572-Y
https://doi.org/10.1007/S10485-019-09572-Y
https://doi.org/10.1007/S10485-019-09572-Y
https://doi.org/10.1007/S10485-019-09572-Y
https://doi.org/10.1007/s10485-019-09572-y
https://doi.org/10.48550/arXiv.2403.16388
https://doi.org/10.4230/LIPICS.CSL.2020.18
https://doi.org/10.4230/LIPICS.CSL.2020.18
https://doi.org/10.4230/LIPICS.CSL.2020.18
https://doi.org/10.4230/LIPICS.CSL.2020.18
https://doi.org/10.4230/LIPIcs.CSL.2020.18
https://doi.org/10.1016/J.ENTCS.2016.09.032
https://doi.org/10.1016/J.ENTCS.2016.09.032
https://doi.org/10.1016/J.ENTCS.2016.09.032
https://doi.org/10.1016/J.ENTCS.2016.09.032
https://doi.org/10.1016/j.entcs.2016.09.032
https://doi.org/https://doi.org/10.1007/s10485-013-9312-0
https://doi.org/https://doi.org/10.1007/s10485-013-9312-0
https://doi.org/https://doi.org/10.1007/s10485-013-9312-0
https://doi.org/https://doi.org/10.1007/s10485-013-9312-0
https://arxiv.org/pdf/1606.08379
https://doi.org/10.1017/S096012952200038X
https://doi.org/10.1017/S096012952200038X
https://doi.org/10.1017/S096012952200038X
https://doi.org/10.1017/S096012952200038X
https://doi.org/10.1017/S096012952200038X
https://doi.org/10.4230/LIPIcs.CSL.2024.21
https://doi.org/10.4230/LIPIcs.CSL.2024.21
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-213.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-213.pdf
https://doi.org/https://doi.org/10.1007/BF02025118
https://doi.org/https://doi.org/10.1007/BF02025118
https://doi.org/https://doi.org/10.1007/BF02025118
https://doi.org/https://doi.org/10.1007/BF02025118
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1017/S0960129516000372
https://arxiv.org/abs/1606.01642
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/S0304-3975(03)00392-X

20 D. Barbarossa

14. Gallagher, J.: The differential lambda-calculus: syntax and semantics for differen-
tial geometry. Ph.D. thesis, Doctoral thesis, University of Calgary, Calgary, Canada
(2018), https://pages.cpsc.ucalgary.ca/~robin/Theses/GallagherPhD.pdf

15. Gödel, V.K.: Über Eine Bisher Noch Nicht Benützte Erweiterung des Finiten
Standpunktes. Dialectica 12(3-4), 280–287 (1958). https://doi.org/10.1111/j.
1746-8361.1958.tb01464.x

16. Kerjean, M., Pédrot, P.: ∂ is for Dialectica. In: Sobocinski, P., Lago, U.D., Esparza,
J. (eds.) Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2024, Tallinn, Estonia, July 8-11, 2024. pp. 48:1–48:13.
ACM (2024), https://doi.org/10.1145/3661814.3662106

17. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and Their Use in
Mathematics. Springer monographs in mathematics (2008) (01 2008). https://doi.
org/10.1007/978-3-540-77533-1

18. Lee, J.M.: Introduction to Smooth Manifolds. Springer New York, NY (2012). https:
//doi.org/https://doi.org/10.1007/978-1-4419-9982-5

19. Lemay, J.P.: Jacobians and Gradients for Cartesian Differential Categories. In:
Kishida, K. (ed.) Proceedings of the Fourth International Conference on Applied
Category Theory, ACT 2021, Cambridge, United Kingdom, 12-16th July 2021.
EPTCS, vol. 372, pp. 29–42 (2021). https://doi.org/10.4204/EPTCS.372.3, https:
//doi.org/10.4204/EPTCS.372.3

20. Mak, C., Ong, L.: A Differential-form Pullback Programming Language for Higher-
order Reverse-mode Automatic Differentiation. CoRR abs/2002.08241 (2020),
https://arxiv.org/abs/2002.08241

21. Manzonetto, G.: What is a categorical model of the differential and the resource
λ-calculi? Math. Struct. Comput. Sci. 22(3), 451–520 (2012). https://doi.org/10.
1017/S0960129511000594, http://arxiv.org/abs/1011.2307

22. Pédrot, P.: A functional functional interpretation. In: Henzinger, T.A., Miller,
D. (eds.) XXIX Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), Vienna, Austria, July 14 - 18, 2014. pp. 77:1–77:10. ACM (2014),
https://doi.org/10.1145/2603088.2603094

23. Pédrot, P.M.: A Materialist Dialectica. Theses, Paris Diderot (Sep 2015), https:
//hal.science/tel-01247085

24. Spivak, D.I.: Poly: An abundant categorical setting for mode-dependent dynamics.
CoRR (2020), https://arxiv.org/pdf/2005.01894

25. Spivak, D.I.: Generalized Lens Categories via functors Cop → Cat (2022), https:
//arxiv.org/abs/1908.02202

https://pages.cpsc.ucalgary.ca/~robin/Theses/GallagherPhD.pdf
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1145/3661814.3662106
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.4204/EPTCS.372.3
https://doi.org/10.4204/EPTCS.372.3
https://doi.org/10.4204/EPTCS.372.3
https://doi.org/10.4204/EPTCS.372.3
https://arxiv.org/abs/2002.08241
https://doi.org/10.1017/S0960129511000594
https://doi.org/10.1017/S0960129511000594
https://doi.org/10.1017/S0960129511000594
https://doi.org/10.1017/S0960129511000594
http://arxiv.org/abs/1011.2307
https://doi.org/10.1145/2603088.2603094
https://hal.science/tel-01247085
https://hal.science/tel-01247085
https://arxiv.org/pdf/2005.01894
https://arxiv.org/abs/1908.02202
https://arxiv.org/abs/1908.02202

	On Dialectica and Differentiation, via Categories

