
Stability Property for the Call-by-Value λ-calculus

through Taylor Expansion

Davide Barbarossa
Departement of Computer Science, University of Bath

Abstract

We prove the Stability Property for the call-by-value λ-calculus (CbV in the following) (Theo-
rem 3.1). This result states necessary conditions under which the contexts of the CbV λ-calculus
commute with intersections of approximants. This is an important non-trivial result, which implies
the sequentiality of the calculus (Corollary 3.2). We prove it via the tool of resource approximation
[ER08], whose power has been shown, e.g. in [BM20, Bar22, CA23]. This technique is usually con-
ceived for the ordinary λ-calculus1, but it can be easily defined for the CbV setting [KMP20].Our
proof is the adaptation of the ordinary one given in [BM20], with some minimal technical modifica-
tion due to the fact that in the CbV setting one linearises terms in a slightly different way than usual
(cfr. !(A(B) vs !A(B). The content of this contribution is taken from the PhD thesis [Bar21].

1 CbV and its resource approximation in a nutshell

Definition 1.1 (CbV λ-calculus). The set Λcbv of the CbV λ-terms is the same as for the ordinary λ-
calculus. The set Val of values contains exactly variables and abstractions. k-Contexts (k different holes
occurring any number of times) are defined as for ordinary λ-calculus. The reduction →v⊆ Λcbv ×Λcbv

of CbV λ-calculus is defined in [KMP20, Definition 1.5] and it is confluent ([KMP20, Proposition 1.18]).

Definition 1.2 (Resource CbV λ-calculus). [KMP20, Def. 3.1] The set Λr
cbv of the resource-CbV λ-

terms is the set Λr
cbv := Valr ∪ Simpr of CbV-terms, where the sets Valr of resource values and Simpr

of resource simple terms are defined by mutual induction (plus α-equivalence) by:

Valr : v ::= x | λx.s Simpr : s ::= s1s2 | [v1, . . . , vn]

The reduction →r⊆ Λr
cbv×P(Λr

cbv) of the resource CbV calculus is defined in [KMP20, Definition 3.3, 3.4].

Proposition 1.3. [KMP20, Proposition 3.6] The reduction →r is confluent and strongly normalising.

Definition 1.4 (Qualitative CbV-Taylor expansion). [KMP20, Def. 3.9] The (qualitative) CbV-Taylor
expansion is the following map T : Λcbv → P(Simpr):

T (x) := { [x, (n). . ., x] | n ∈ N} T (λx.M) := { [λx.s1, . . . , λx.sn] | n ∈ N and si ∈ T (M)}

T (M1M2) := {s1s2 | si ∈ T (Mi)}.

One defines as usual the set NFT (M) :=
⋃
s∈T (M) nf (M) ⊆ nf (Simpr). The inclusion NFT (M) ⊆

NFT (N) defines as usual a partial preorder M ≤ N , as well as its symmetric closure equivalence =τ .

Remark 1.5. One has nf (MN) = nf (nf (M)nf (N)) and nf (λx.M) = λx.nf (M), whenever the written
normal forms exist. Moreover, NFT (λx.M) := { [λx.s1, . . . , λx.sn] | n ∈ N and si ∈ NFT (M)} and
NFT (MN) :=

⋃
si∈NFT (M) nf (s1s2).

The following result appears in [KMP20, Lemma 4.6]. [Bar21] gives a more concise inductive proof.

Theorem 1.6 (Monotonicity Property). Any n-context C is monotone w.r.t. ≤.

1Sometimes, in contrapposition to the CbV λ-calculus, this is addressed as “Call by Name”. Strictly speaking however,
the ordinary λ-calculus does not follow a supposed “CbN evaluation” since there is no restriction on redexes’ firing.

1

Remark that Theorem 1.6 implies that contexts are well-defined functions on the quotient Λcbv/=T .
We can simulate →v via �r. As for the ordinary λ-calculus, this is one of the fundamental features

of a notion of approximation.

Proposition 1.7 (Simulation Property). [KMP20, Lemma 4.4] If M →v N then:

1. for all s ∈ T (M) there exists T ⊆ T (N) s.t. s�r T

2. for all s′ ∈ T (N) s.t.2 s′ 6→0 0, there exists s ∈ T (M) s.t. s�r s
′ + T for some sum T.

A CbV λ-theory is a congruence containing the reflexive symmetric and transitive closure =v of →v.

Corollary 1.8 (Taylor normal form λ-theory). The equivalence =τ is a CbV λ-theory.

The proofs of the following results are either trivial or appear in [KMP20, Lemma 4.9].

Remark 1.9. If V ∈ Val then T (V) ⊆ ! Valr.

Remark 1.10. Let t ∈ Λr
cbv normal and belonging to T (M). If M →v N then t ∈ T (N).

Proposition 1.11. If t ∈ NFT (M), there exists N ∈ Λcbv s.t. M �v N and t ∈ T (N).

Proposition 1.12 (Partition Property). For all t, s ∈ T (M) s.t. t 6= s, we have nf (t) ∩ nf (s) = ∅.

As for the ordinary λ-calculus, this last property is the key non-trivial ingredient of the proof of the
Stability Property. It says that NFT (M) is partitioned by the family {nf (t) | t ∈ T (M) and nf (t) 6= ∅}.

2 Rigid resource terms

In this section, as for the usual λ-calculus, we consider “rigid” terms/contexts, in which we fix an
enumeration of the resources appearing in the bags (hence the permutations in the Definitions 2.2 and
2.3). This allows us to obtain Lemmas 2.5 and 2.6.

Definition 2.1 (CbV resource-contexts). The set Cxtrk of CbV resource-k-contexts is defined as:
Cxtrk := Valrk ∪ Simpr

k, where Valrk and Simpr
k are defined by mutual induction (without α-equivalence):

Valrk : cv ::= �1 | · · · | �k | x | λx.cs Simpr
k : cs ::= cs1c

s
2 | [cv1, . . . , cvn]

We extend the Taylor expansion on each Cxtk by: T (�i) := { [�i, (n). . .,�i] | n ∈ N} ⊆ Simpr
k.

Definition 2.2 (Rigid CbV λ-terms). 1. A rigid k-context is built as a resource k-context but taking
lists3 of rigid k-contexts instead of bags of resource k-contexts. In particular, a rigid term is a
rigid context with no occurrences of the holes, taken modulo α-equivalence. As for CbV-terms,
rigid contexts are divided into rigid value-contexts and rigid simple-contexts (and this distincion
coincides with that of terms when a context has no holes).

2. Let c be a resource k-context. We define a set Rigid(c) of rigid k-contexts associated with c, whose
elements are called the rigids of c, by mutual induction on Valrk and Simpr

k as follows:

Rigid(�i) = {�i} Rigid(x) = {x}

Rigid(λx.c0) = {λx.c•0 | c•0 ∈ Rigid(c0)} Rigid(c0c1) = {c•0c•1 | c•i ∈ Rigid(ci)}
Rigid([c1, . . . , ck]) = {〈c•σ(1), . . . , c

•
σ(k)〉 | σ permutation and c•i ∈ Rigid(ci)}.

The above definition makes sense since one immediately sees that if c is a resource k-value/simple-
context then any of its rigids c• is a rigid k-value/simple-context.

Definition 2.3. Let c• be a rigid of a CbV resource k-context c and, for i = 1, . . . , k, let ~v i :=
〈vi1, . . . , videg�i

(c)〉 be a list4 of resource values (that is, elements of Valr). We define, by mutual in-

duction on Valrk and Simpr
k, a resource term c•〈~v1, . . . , ~vk〉 ∈ Λr

cbv s.t. if c ∈ Valrk (resp. ∈ Simpr
k) then

c•〈~v1, . . . , ~vk〉 ∈ Valr (resp. ∈ Simpr). The definition goes as follows:

2The condition s′ 6→0 0 refers to a particular reduction →0, which we did not specify, see [KMP20].
3We use 〈·, . . . , ·〉 to denote lists.
4If deg�i

(c) = 0 we mean the empty list.

2

1. If c = �i then c• = �i; we set c•〈〈〉, . . . , 〈〉, 〈vi1〉, 〈〉, . . . , 〈〉〉 := vi1

2. If c = x then c• = x; we set c•〈〈〉, . . . , 〈〉〉 := x

3. If c = λx.c0 then c• = λx.c•0 where c•0 is a rigid of c0; we set c•〈~v1, . . . , ~vk〉 = λx.c•0〈~v1, . . . , ~vk〉

4. If c = c1c2, then c• = c•1c
•
2 where c•i is a rigid of ci, and each list ~v i is a concatenation ~v i =: ~w i1 ~w i2

where the lists ~w ij have exactly deg�i
(cj) elements; we set:

c•〈~v1, . . . , ~vk〉 := c•1〈~w11, . . . , ~wk1〉c•2〈~w12, . . . , ~wk2〉.

5. If c = [c1, . . . , cn], then c• = 〈c•σ(1), . . . , c
•
σ(n)〉 where σ is a permutation and c•i is a rigid of ci,

and each list ~v i is a concatenation ~v i =: ~w i1 · · · ~w in where the lists ~w ij have exactly deg�i
(cσ(j))

elements; we set:

c•〈~v1, . . . , ~vk〉 := [c•σ(1)〈~w
11, . . . , ~w k1〉, . . . , c•σ(n)〈~w

1n, . . . , ~w kn〉].

Remark 2.4. If v �r V then c•〈· · · , 〈· · · , v, · · · 〉, · · · 〉 ∈ Λr
cbv �r {c•〈· · · , 〈· · · , w, · · · 〉, · · · 〉 | w ∈ V}.

The following lemmas will be used in the proof of Theorem 3.1. If ~v is a list we denote with [~v] the
multiset associated with ~v (same elements but disordered).

Lemma 2.5. Let C be a k-context and c1, c2 ∈ T (C) (hence c1, c2 are resource k-contexts). Let c•1, c•2
be rigids respectivly of c1, c2. For i = 1, . . . , k, let ~v i = 〈vi1, . . . , videg�i

(c1)
〉 and ~u i = 〈ui1, . . . , uideg�i

(c2)
〉

be lists of resource values. If c•1〈~v 1, . . . , ~v k〉 = c•2〈~u 1, . . . , ~u k〉 then c1 = c2 and [~v i] = [~u i] for all i.

Proof. Induction on C.

Case C = �i. Then c1 = [�i, (n). . .,�i], c2 = [�i, (m). . . ,�i], ~v i = 〈vi1, . . . , vin〉, ~u i = 〈ui1, . . . , uim〉
and ~v j = 〈〉 = ~u j for j 6= i. So [vi1, . . . , vin] = c•1〈~v1, . . . , ~vk〉 = c•2〈~u1, . . . , ~uk〉 = [ui1, . . . , uim],
thus n = m, i.e. c1 = c2.

Case C = x. Then c1 = [x, (n). . ., x], c2 = [x, (m). . . , x] and ~v i = 〈〉 = ~u i. So [x, (n). . ., x] = c•1〈~v1, . . . , ~vk〉 =

c•2〈~u1, . . . , ~uk〉 = [x, (m). . . , x], thus n = m, i.e. c1 = c2.

Case C = λx.C0. Then, for i = 1, 2, one has ci = [λx.ci1, . . . , λx.cini] with cij ∈ T (C0) for all i, j.
So c•i = 〈λx.c•iσi(1)

, . . . , λx.c•iσi(ni)
〉 where σi is a permutation on ni elements. By Definition 2.3 we

have that c•1〈~v1, . . . , ~vk〉 and c•2〈~u1, . . . , ~uk〉 are equal to:

[λx.c•iσ̃i(1)
〈~w i11, . . . , ~w ik1〉, . . . , λx.c•iσ̃i(ni)

〈~w i1ni , . . . , ~w ikni〉]

respectively if i = 1 or i = 2, where σ̃i is some permutation on ni elements and where the concate-
nation ~wij1 · · · ~wijni gives ~vj if i = 1 and gives ~uj if i = 2. From c•1〈~v1, . . . , ~vk〉 = c•2〈~u1, . . . , ~uk〉
we get that n1 = n2 =: n and that there exists a permutation ρ on n elements which identifies
each term of the bag c•1〈~v1, . . . , ~vk〉 with the respective one of the bag c•2〈~u1, . . . , ~uk〉, that is, for
all j = 1, . . . , n, one has:

c•1j〈~w 1 1 σ̃1
−1(j), . . . , ~w 1 k σ̃1

−1(j)〉 = c•2ρ(j)〈~w
2 1 σ̃2

−1(ρ(j)), . . . , ~w 2 k σ̃2
−1(ρ(j))〉.

The inductive hypothesis gives c1j = c2ρ(j) for all j = 1, . . . , n and, putting h := σ̃1
−1

(j), we have

~w 1 i h = ~w 2 i σ̃2
−1(ρ(σ̃1(h))) for all i = 1, . . . , k. Now, the former equalities give c1 = c2, while the

latter give [~vi] = [~w1i1 · · · ~w1in] = [~w2i1 · · · ~w2in] = [~ui].

Case C = C ′C ′′. Analogous and easier than the above case.

Lemma 2.6. Let C be a k-context and V1, . . . , Vk ∈ Val. Then:

T (C〈V1, . . . , Vk〉) = {c•〈~v 1, . . . , ~v k〉 | c ∈ T (C), c• rigid of c, [vi1, . . . , v
i
deg�i

(c)] ∈ T (Vi)}.

Proof. Induction on C. Let us show only one of the two base cases, namely the one for C = �i.

{c•〈~v 1, . . . , ~v k〉 | c ∈ T (C), c• rigid of c, [vi1, . . . , v
i
deg�i

(c)] ∈ T (Vi)}
= {〈�i, (n). . .,�i〉〈〈〉, (i−1). . . , 〈〉, 〈vi1, . . . , vin〉, 〈〉, (k−i). . . , 〈〉〉 | n ∈ N, [vi1, . . . , v

i
n] ∈ T (Vi)}

= { [vi1, . . . , v
i
n] | [vi1, . . . , v

i
n] ∈ T (Vi)} = T (Vi) = T (C〈V1, . . . , Vk〉).

3

3 Stability

Given ∅ 6= X ⊆ Λcbv, we can consider
⋂
M∈X NFT (M) ⊆ Λr

cbv, which is the inf (w.r.t. ≤) of X in
Λcbv/=τ . Note that even if an M such that M =τ inf X exists, it need not be unique in Λcbv, but it is
unique in Λcbv/=T . If it exists, we say that inf X is definable in Λcbv/=T . The proof presented below is
an adaptation of the proof for the ordinary λ-calculus [BM20]. Knowing that the proof technique can
be adapted also for the λµ-calculus [Bar22], the fact that one can adapt it for CbV as well, can be seen
as yet an extra strength of Taylor resource approximation. We conclude this section with Corollary 3.2,
which expresses a notion of sequentiality of the calculus.

Theorem 3.1 (Stability Property). Let C : Λcbv/=T × (n). . . × Λcbv/=T → Λcbv/=T be an n-context and
fix non-empty X1, . . . ,Xn ⊆ Val/=T , each upper bounded by some value. If inf Xi is definable in Λcbv/=T
by a value for all i, then the inf of the image of C on X1 × (n). . .×Xn is definable in Λcbv/=T and it is:

C〈 inf
N1∈X1

N1, . . . , inf
Nn∈Xn

Nn〉 = inf
N1∈X1

...
Nn∈Xn

C〈N1, . . . , Nn〉.

Proof. Wlog we can consider that the Xi’s are in Val. Since they are upper bound by a value, for
i = 1, . . . , n there exists Li ∈ Val s.t.

⋃
N∈Xi

NFT (N) ⊆ NFT (Li). Since the inf Xi’s are definable in
Λcbv/=T by a value, let V1, . . . , Vn ∈ Val s.t. NFT (Vi) =

⋂
N∈Xi

NFT (N). It suffices now to show that
NFT (C〈V1, . . . , Vn〉) =

⋂
N1∈X1

· · ·
⋂
Nn∈Xn

NFT (C〈N1, . . . , Nn〉).
(⊆). Immediate by Theorem 1.6.

(⊇). Let t ∈
⋂
~N∈ ~X

NFT (C〈N1, . . . , Nn〉) (where ~N := (N1, . . . , Nn) and ~X := (X1, . . . ,Xn)). For every

~N ∈ ~X , by Lemma 2.6 there exists a CbV n-resource-context c ~N ∈ T (C) and, for every i = 1, . . . , n, a list

~v i~N = 〈vi1~N , . . . , v
idi
~N
〉 (where di := deg�i

(c ~N)) with [~v i~N] ∈ T (Ni) and such that t ∈ nf (c•~N 〈~v
1
~N
, . . . , ~v n~N 〉),

for c•~N a rigid of c ~N . Confluence allows to factorize the reduction from c•~N 〈~v
1
~N
, . . . , ~v n~N 〉 to t as follows:

c•~N 〈nf (v11~N), . . . ,nf (v1d1~N), . . . ,nf (vn1~N), . . . ,nf (vndn~N
)〉�r nf (c•~N 〈~v

1
~N
, . . . , ~v n~N 〉) 3 t.

Wlog di ≥ 1 for all i and nf (vij~N) 6= ∅ for all i, j. In fact, the holes s.t. di = 0 can be ignored, and if both

di ≥ 1 and nf (vij~N) 6= ∅ for some j, then by the previous line we would have t ∈ nf (∅), a contraddiction.

So for all i = 1, . . . , n and j = 1, . . . , di, there exists wij~N ∈ nf (vij~N) such that:

nf (c•~N 〈~w
1
~N
, . . . , ~w n

~N
〉) 3 t (1)

and being Ni ∈ Xi which is bounded by Li, we have [~wi~N] ∈ nf ([~vi~N]) ⊆ NFT (Ni) ⊆ NFT (Li). From

the inclusion [~wi~N] ∈ NFT (Li) we obtain, thanks to Remark 1.9 because Li is a value, a simple term

[~u i~N] ∈ T (Li) such that:

[~wi~N] ∈ nf ([~ui~N]) (2)

i.e. they have the same number of elements and nf (uij~N) 3 wij~N for all i, j, ~N . By composing thus a reduc-

tion from c•~N 〈~w
1
~N
, . . . , ~w n

~N
〉 to t with a reduction from uij~N to wij~N , we find that t ∈ nf (c•~N 〈~u

1
~N
, . . . , ~un~N 〉).

This holds for all ~N ∈ ~X , i.e.:

t ∈
⋂
~N∈ ~X

nf (c ~N 〈~u
1
~N
, . . . , ~un~N 〉). (3)

Now, Lemma 2.6 gives c•~N 〈~u
1
~N
, . . . , ~un~N 〉 ∈ T (C〈L1, . . . , Ln〉). But since the Li’s are independent from

N1, . . . , Nn, and thanks to (3), we can apply Proposition 1.12, and obtain that the set {c•~N 〈~u
1
~N
, . . . , ~un~N 〉 |

~N ∈ ~X} is actually a singleton. Therefore, Lemma 2.5 tells us that also the terms c•~N and the bags [~u i~N]

are independent from ~N ∈ ~X . The unique element of the previous sigleton has hence shape c•〈~u i, . . . , ~un〉,
with c• a rigid of a c ∈ T (C), and [~u i] ∈ T (Li). Recalling now that [~w i

~N
] ∈ NFT (Li), we can apply

Proposition 1.11 in order to obtain, for each i = 1, . . . , n, an L′
[~w i

~N
]
∈ Λcbv such that Li �v L

′
[~w i

~N
]

and

[~w i
~N

] ∈ T (L′
[~w i

~N
]
). Remark that these L[~w i

~N
]’s must in fact be values, since they are reducts of the values

4

Li. Consider now the set {[~w i
~N

] | ~N ∈ ~X}, which can be a priori infinite. Since for i fixed, the set

{[~u i~N] | ~N ∈ ~X} is a singleton {[~u i]}, (2) entails that [~wi~N] ∈ nf ([~ui]), and our set {[~w i
~N

] | ~N ∈ ~X} must

thus in fact be finite. Therefore we can invoke confluence in order to say that the finitely many L′
[~w i

~N
]
’s

share a commond reduct, call it L′i, which as the notation shows is now independent from [~w i
~N

] (but still

depends on i). Of course L′i is also a reduct of Li, and it is still a value. Also, since each [~w i
~N

] belongs

to T (L′
[~w i

~N
]
) and is normal, by Remark 1.10 we have {[~w i

~N
] | ~N ∈ ~X} ⊆ T (L′i). Thus we can apply

Lemma 2.6 and find that, for every ~N ∈ ~X , we have:

c•〈~w 1
~N
, . . . , ~wn~N 〉 ∈ T (C〈L′1, . . . , L′n〉). (4)

But now thanks to (1) (which holds for all ~N ∈ ~X) and (4), we can apply again Proposition 1.12 in order

to find that the set {c•〈~w 1
~N
, . . . , ~wn~N 〉 |

~N ∈ ~X} is a singleton. Again by Lemma 2.5, we have that all the

bags [~w 1
~N

], . . . , [~wn~N] for ~N ∈ ~X , coincide respectively to some bags [~w 1], . . . , [~wn] which are independent

from ~N ∈ ~X . So the only element of the previous singleton has shape c•〈~w 1, . . . , ~wn〉, and by (1) we get:

t ∈ nf (c•〈~w 1, . . . , ~wn〉). (5)

Now, for all i, remembering what we found already, we have [~w i] = [~w i
~N

] ∈ NFT (N) for all N ∈ Xi.
That is,

[~w i] ∈
⋂
N∈Xi

NFT (N) = NFT (Vi) (6)

where we finally used the hypothesis. From (6) and Lemma 2.6 one can now easily conclude that
t ∈ nf (c•〈~w1, . . . , ~wn〉) ⊆ NFT (C〈V1, . . . , Vn〉).

As usual, one obtains as corollary the non-existence of the following parallel-or . We use the usual
encoding of pairs: (M,N) := λz.zMN . Remark that a pair is a value.

Corollary 3.2 (No parallel-or). There is no Por ∈ Λcbv s.t. for all M,N ∈ Λcbv,{
Por (M,N) =τ True if M 6=τ Ω or N 6=τ Ω
Por (M,N) =τ Ω if M =τ N =τ Ω.

Proof. Otherwise, for C := Por�, X = {(True,Ω), (Ω, True)} (upper bounded by the value (True, True)),
and the value V = (Ω,Ω) =τ inf{(True,Ω), (Ω, True)}, Theorem 3.1 would give the contradiction:

True =τ inf{C〈(True,Ω)〉, C〈(Ω, True)〉} =τ C〈(Ω,Ω)〉 =τ Ω.

Remark 3.3. Here Ω is taken as representative of “operationally meaningless” term in the calculus.
However, one should see what happens with the more appropriate CbV notion studied in [AGK24].

4 Final comments

The CbV λ-calculus that we have used is of the form given in [KMP20]. However, one could argue
that the canonical formulation of CbV should be on the lines of the one given in [AGK24] (explicit
substitutions and a distant action reduction). The first work would therefore be to reproduce our proof
for that syntax (or at least prove that Stability in either setting is equivalent to Stability in the other).

Moreover, we remark that Section 2, where we have to consider lists instead of multisets, is quite
annoying. This detour also appears, in the exact same form, for the ordinary setting. If one would
directly define resource approximation with lists (usually called the rigid/polyadic resource approximation
[OA22, MPV18]), this annoying detour would probably disappear (its content would still be there, but in
a different shape). The second work would therefore be to reformulate the whole theory of approximation
of CbV (and even the ordinary one!) in a rigid/polyadic way.

Finally, in the recent [AGK24], a proof of the Genericity Property for CbV is given, in a sense inspired
from the one for the ordinary λ-calculus given in [BM20]. Once a good notion of CbV-Böhm trees (or
similar) at hand, one should be able to directly adapt the latter proof to CbV and understand the
relations between the two proof techniques. We see the Stability and Genericity Properties of CbV (once
agreed on an established form of the calculus) as the first steps of the development of a “mathematical
theory of CbV”, in the same sense that we have for the ordinary one. A third work would be, for instance,
to ask if CbV does enjoy the Perpendicular Lines Property and the Continuity Lemma (see [BM20]).

5

References

[AGK24] Victor Arrial, Giulio Guerrieri, and Delia Kesner. Genericity through stratification. CoRR,
abs/2401.12212, 2024.

[Bar21] Davide Barbarossa. Towards a resource based approximation theory of programs. (Vers une
théorie de l’approximation des programmes basée sur la notion de ressources). PhD thesis,
Paris 13 University, Villetaneuse, France, 2021.

[Bar22] Davide Barbarossa. Resource approximation for the λµ-calculus. In Christel Baier and Dana
Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, Haifa, Israel, August 2 - 5, 2022, pages 27:1–27:12. ACM, 2022.

[BM20] Davide Barbarossa and Giulio Manzonetto. Taylor subsumes Scott, Berry, Kahn and Plotkin.
Proc. ACM Program. Lang., 4(POPL):1:1–1:23, 2020.

[CA23] Rémy Cerda and Lionel Vaux Auclair. Finitary simulation of infinitary β-reduction via taylor
expansion, and applications. Log. Methods Comput. Sci., 19(4), 2023.

[ER08] Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

[KMP20] Emma Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting call-by-value Böhm trees
in light of their Taylor expansion. Log. Methods Comput. Sci., 16(3), 2020.

[MPV18] Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and
intersection types. Proc. ACM Program. Lang., 2(POPL):6:1–6:28, 2018.

[OA22] Federico Olimpieri and Lionel Vaux Auclair. On the taylor expansion of λ-terms and the
groupoid structure of their rigid approximants. Log. Methods Comput. Sci., 18(1), 2022.

6

	CbV and its resource approximation in a nutshell
	Rigid resource terms
	Stability
	Final comments

