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In the last few years there has been a growing interest towards methods for statistical inference and learning

based on computational geometry and, notably, tropical geometry, that is, the study of algebraic varieties

over the min-plus semiring. At the same time, recent work has demonstrated the possibility of interpreting

higher-order probabilistic programming languages in the framework of tropical mathematics, by exploiting

algebraic and categorical tools coming from the semantics of linear logic. In this work we combine these two

worlds, showing that tools and ideas from tropical geometry can be used to perform statistical inference over

higher-order probabilistic programs. Notably, we first show that each such program can be associated with a

degree and a 𝑛-dimensional polyhedron that encode its most likely runs. Then, we use these tools in order to

design an intersection type system that estimates most likely runs in a compositional and efficient way.
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1 Introduction
From Probabilistic Models to Probabilistic Programming Languages. Probabilistic models play a

fundamental role in many areas of computer science, such as, just to name a few, machine learning,

bioinformatics, speech recognition, robotics and computer vision. For many common problems

(like, for example, identifying the regions of DNA that code for some specific protein or tracking the

location of a vehicle from the data produced by possibly faulty sensors) finding an exact solution

requires to enumerate an impossibly large list of possibilities; by contrast, a probabilistic model

may allow one to focus only on those (usually, much less) possibilities which are more likely

to occur, under normal circumstances. In this respect, models like Bayesian Networks (BN) or

Hidden Markov Models (HMM) provide an extremely well-studied and modular approach making

the representation of (our current knowledge of) the system under study independent from the

inference algorithms that can be applied in order to answer specific questions about it.

While probabilistic models provide a description of a system under conditions of uncertain

knowledge, probabilistic programming languages (PPL) provide ways to specify such models via

programs: the execution of the program produces the model, in the sense that the probabilistic

reductions of the program describe the trajectories of the model. The inference tasks associated with
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a model are thus naturally related to the study of the probabilistic execution of the corresponding

program (e.g., what is the probability that the program will return True? Or that it terminates?).

The goal of PPL like e.g. Church or Anglican (to name two languages that rely on the LISP

architecture), is to streamline the activity of probabilistic modeling, by exploiting features of pro-

gramming languages like compositionality and higher-order functions. This becomes particularly

relevant when considering possibly infinitary models that take temporality into account, like

e.g. template-based Bayesian Networks, which can be conveniently described in higher-order

functional languages, cf. [23]. The study of PPLs has recently seen a flourishing of research direc-

tions, going from more foundational/category-theoretic approaches [15, 30, 31, 48], to others more

oriented towards inference algorithms and their efficiency like [23].

The Tropical Geometry of Probabilistic Models . The application of methods from computational

algebraic geometry in areas like machine learning and statistical inference is well investigated.

Among such methods a growing literature has explored the application of ideas from tropical

geometry to the study of deep neural networks and graphical probabilistic models [12, 38, 45, 46, 53].

Tropical geometry is the study of polynomials and algebraic varieties defined over the min-

plus (or the max-plus) semiring: a tropical polynomial is obtained from a standard polynomial by

replacing + with min and × with +. Several computationally difficult problems expressible in the

language of algebraic geometry admit a tropical counterpart which is purely combinatorial and, in

some cases, tractable in an effective way. For example, while finding the roots of a polynomial is

a paradigmatic undecidable problem, tropical roots can be computed in linear time and used to

approximate the actual roots of the polynomial [43, 44].

Concerning probabilistic models, it has been observed that several inference algorithms based

on convex optimization, like the Viterbi algorithm, have a “tropical flavor” [49]. Usually, graphical

probabilistic models express the probability of an event as a polynomial 𝑝𝐸 , which intuitively adds

up the probabilities 𝑝𝑖 of the (so many) mutually independent situations 𝑖 that might produce

𝐸. A typical problem, for instance when computing Bayesian posteriors, is to know, given the

knowledge that the event 𝐸 occurred, which situations 𝑖 are the most likely to have produced 𝐸.

While comparing all the situations 𝑖 is certainly not feasible, works like [45, 46] have shown that

the study of the Newton polytope of the tropical polynomial associated to 𝑝𝐸 provides an efficient

method to select the potential solutions 𝑖 .

The Tropical Geometry of PPLs. While ideas from tropical mathematics have been applied success-

fully to probabilistic models like HMM or BN, in this paper we are concerned with the following,

broader, question: would it be possible to exploit the computational toolkit of tropical geometry

as an inference engine for the programs of some higher-order programming language, and, as a

consequence, for the large class of probabilistic models that this language may represent?

Our approach relies on a recent line of work [6] that has demonstrated the possibility of in-

terpreting higher-order probabilistic languages within the setting of tropical mathematics. This

interpretation relies on the weighted relational semantics (WRS) [35], a well-studied class of models

of PCF and related languages that is parametric on the choice of a continuous semiring 𝑄 . The

WRS arises from the literature on linear logic and has been at the heart of numerous investigations

and results about programming languages with non-determinism, probabilities or even quantum

primitives [13, 20, 21, 33, 34, 47].

When 𝑄 is the min-plus semiring (on R≥0 ∪ {∞} or N ∪ {∞}), one obtains a semantics of

probabilistic PCF (pPCF) that has been shown to capture the most likely behavior of a program

[6, 35]. For example, of the many ways in which a program 𝑀 of type Bool may reduce to True,

only those which have the highest probability to occur are represented in the semantics. Therefore,

the tropical WRS intuitively “solves” the inference task of selecting the most likely execution
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paths of a pPCF- program, and, along with them, the most likely trajectories in the corresponding

probabilistic model. However, as this semantics is neither finitary nor computable in general, the

obvious question is: to which extent could such “solutions” be produced in an effective way?

This paper provides an answer to this question, obtained in two steps: first, we exploit the tropical

setting to show that the problem of describing a most likely trajectory for a pPCF program can be

reduced to a search problem within some finite (albeit possibly very large) space. This fact is non-

trivial, since, unlike standard BN, the probabilistic models corresponding to pPCF programs may

have an infinite trajectory space. While this fact is established via a non-constructive argument, by

combining ideas from tropical geometry and programming language theory, we design a recursive

procedure that, given a higher-order program of ground type, explores the trajectories of the

corresponding infinitary model in a compositional way. This procedure is proved to converge to a

solution of the following two standard inference tasks (cf. Theorem 7.12):

(I1) select the most likely trajectories of the model,

(I2) for a fixed trajectory 𝜃 , identify the values of the probabilistic parameters making 𝜃 most likely.

The convergence of this procedure is itself non-recursive, as the underlying problem is undecidable,

but the partial solutions provided at each stage of the computation are correct for a restricted set of

trajectories approximating the behaviour of the program. Furthermore, we show that in several

interesting cases (e.g. when considering an affine higher-order program) our method does indeed

produce a correct answer, and it does so efficiently: while the number of possible trajectories is

exponential in the size of the program, the most likely ones are found in polynomial time.

The Tropical Degree. As we said, our first result shows that the trajectory space for a pPCF

program can be reduced to a finite one. This is obtained by exploiting a representation of such

programs via tropical polynomials. Indeed, graphical probabilistic models like BN and HMM are

often presented algebraically via families of polynomials in a given set of parameters. The WRS

extends this presentation to pPCF programs, except that, due to their higher-order nature, programs

correspond to power series, not just polynomials, in the parameters. Intuitively, if a finite sum of

monomials is enough to add up finitely many independent trajectories that may lead to the same

result, an infinite sum is required when the number of trajectories is infinite. When considering the

interpretation of pPCF over the tropical semiring, these power series are turned into tropical analytic

functions (taf, for short), that is, continuous functions that can be written as 𝑓 (𝑥) = inf𝑖∈𝐼 𝜙𝑖 (𝑥),
i.e. an inf of possibly infinitely many linear maps 𝜙𝑖 (𝑥). While tropical polynomials and their

geometric properties are very well-studied, the literature on taf is still scarce [6, 43].

Our central result here, Corollary 5.5 from Section 5, is that any program 𝑀 of ground type,

say Bool, is represented by a taf that is in fact a tropical polynomial (in other words, that 𝑓 can

be written as 𝑓 (𝑥) = min𝑖∈ 𝐽 ⊂𝐼 𝜙𝑖 for some finite subset 𝐽 ⊂ 𝐼 ). This follows from a general result

(cf. Proposition 5.4) about tafs with discrete coefficients. The meaning of this result is that, among

the many trajectories that may lead to the same event, only a finite portion has a chance of occurring

“most likely”. Intuitively, if we think of𝑀 as describing a probabilistic model that iterates a given

procedure until it produces a given result 𝑜 (a typical Las Vegas algorithm), then the probability

that 𝑜 was obtained after no less than 𝑛 iterations will reach its maximum after a finite number 𝐷

of steps: the greater the number of iterations in a reduction of 𝑀 , the lower the probability that

this reduction may actually have occurred. This number 𝐷 is what we call tropical degree of𝑀 , and

coincides with the (finite) degree of the tropical polynomial that captures the behavior of𝑀 .

Statistical Inference via Intersection Types and the Newton Polytope. Even once we have reduced

the trajectories of our program to a finite set, this set may still be too large to be enumerated in

practice. The second step is thus to show that the trajectory space can be further reduced to one of

a more tractable size, in order to have a hope to access it in a feasible computational way. Our first
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result here is to associate a program𝑀 with a 𝑛-dimensional polyhedron 𝑁𝑃min (𝑀), a variant of the
standard Newton polytope called theminimal Newton polytope, that encodes the most likely runs of

𝑀 in a more optimized way (cf. Theorem 6.6). Then, we design a type system Ptrop that captures the
most likely executions of the program compositionally in𝑀 (cf. Theorem 7.7), and we show that

this system can be used to design a method that reconstructs the polytope 𝑁𝑃min (𝑀) in a recursive

way. As anticipated before, while the termination condition for this method is non-recursive, we

discuss the situations in which it can be used to provide correct solutions efficiently. The system

Ptrop uses non-idempotent intersection types [4, 11, 18, 21], a well-studied technique to capture the

quantitative behavior of higher-order programs. In Ptrop a single type derivation may explore a

plurality of possible executions of the program, at the same time selecting a small enough set of most

likely trajectories; to do that it makes use of an algorithm to compose graphical models inspired by

the Viterbi algorithm for HMM and relying on the computation of the minimal Newton polytopes

of the underlying polynomials (cf. Theorem 6.9).

Outline of the Paper. In Section 2 we introduce the language PCF⟨ ®𝑋 ⟩, a parameterized version

of probabilistic PCF inspired from [21, 35] that will serve as our base language, and we illustrate

how its programs describe potentially infinite discrete probabilistic models. Section 3 contains an

informal overview on the problem of finding most likely explanations for PCF⟨ ®𝑋 ⟩ programs and

of our main ideas to overcome them. In Section 4 we introduce a parameterized version of the

weighted relational semantics, yieding a model of PCF⟨ ®𝑋 ⟩ in terms of formal power series. Section

5 contains our first result, that is, that first-order type programs of PCF⟨ ®𝑋 ⟩ have a finite tropical
degree. Section 6 contains our results on the minimal Newton polytope and our variant of the

Viterbi algorithm to compute the tropical product of polynomials. In Section 7 we introduce the

intersection type system Ptrop and the method, relying on it, to enumerate the most likely runs.

Finally, in Section 8 we discuss related work and future directions.

2 Parametric PCF: Specifying Models via Higher-Order Programs
In this section we introduce PCF⟨ ®𝑋 ⟩, a variant of probabilistic PCF [21, 35], that will serve as our
base language in the rest of the paper. We then illustrate in which sense the programs of PCF⟨ ®𝑋 ⟩
describe a class of discrete (infinitary) probabilistic models that we will explore in the next sections.

2.1 The language PCF⟨ ®𝑋 ⟩
The language PCF⟨ ®𝑋 ⟩ differs from standard probabilistic PCF [21, 35] in that real probabilities are

replaced by a finite number of parameters 𝑋1, . . . , 𝑋𝑛 . For instance, a probabilistic term 𝑀 ⊕𝑝 𝑁 ,

corresponding to a choice yielding𝑀 with probability 𝑝 and 𝑁 with probability 1 − 𝑝 , is replaced

in PCF⟨ ®𝑋 ⟩ by a parametric term𝑀 ⊕𝑋 𝑁 , intuitively corresponding to a choice between𝑀 and 𝑁

depending on some unknown parameter 𝑋 . A similar language with probabilistic parameters was

used already in [21] to establish the full abstraction of the semantics of probabilistic coherent spaces.

The reason for considering, in this work, a language where explicit probabilities are replaced by

parameters is twofold. Firstly, in probabilistic models like BN or HMM it is standard to take the

underlying basic probabilities as parameters of the model, for instance when considering problems

like that of computing the maximum likelihood of an event. In the next section we will make more

precise the role of parameters in the inference tasks we consider in this work.

The second reason is that we will explore, in parallel, an interpretation of PCF⟨ ®𝑋 ⟩ that associates
parameters with actual probabilities 𝑞 ∈ [0, 1] as well as a second interpretation that associates the

same parameters with negative log-probabilities 𝑧 = − ln𝑞 ∈ R∞≥0. Indeed, the methods based on
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Γ ⊢ 0 : N
Γ ⊢ 𝑀 : N

Γ ⊢ succ𝑀, pred𝑀 : N Γ ⊢ 0, 1 : Bool
Γ ⊢ 𝑀 : Bool

Γ ⊢ 𝑀 : N

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴 → 𝐵

Γ ⊢ 𝑀 : 𝐴 → 𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀𝑁 : 𝐵

Γ ⊢ 𝑀 : N Γ ⊢ 𝑁, 𝑃 : 𝐴

Γ ⊢ ifz(𝑀,𝑁, 𝑃 ) : 𝐴
Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 ⊕𝑋 𝑁 : 𝐴

Γ ⊢ 𝑀 : 𝐴 → 𝐴

Γ ⊢ Y𝑀 : 𝐴

(a) Typing rules.

ifz(0, 𝑀, 𝑁 )
[]
→ 𝑀 (𝜆𝑥.𝑀 )𝑁

[]
→ 𝑀 [𝑁 /𝑥 ] pred 0

[]
→ 0 𝑀 ⊕𝑋𝑖

𝑁
𝑋𝑖→ 𝑀

ifz(succ n, 𝑀, 𝑁 )
[]
→ 𝑁 Y𝑀

[]
→ 𝑀 (Y𝑀 ) pred (succ𝑀 )

[]
→ 𝑀 𝑀 ⊕𝑋𝑖

𝑁
𝑋𝑖→ 𝑁

ifz(𝑀,𝑃,𝑄 )
𝜇
→ ifz(𝑁, 𝑃,𝑄 ) 𝑀𝑃

𝜇
→ 𝑁𝑃 pred𝑀

𝜇
→ pred 𝑁 succ𝑀

𝜇
→ succ 𝑁

(b) Parametric reduction rules. In the last line, we suppose𝑀
𝜇
→ 𝑁 .

Fig. 1. Rules of PCF⟨ ®𝑋 ⟩.

tropical geometry that we develop exploit the latter, more combinatorial, viewpoint as a means to

gain knowledge about the former.

Definition 2.1. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 distinct formal variables. The terms of PCF⟨ ®𝑋 ⟩ are defined by

the following grammar (and quotiented by usual 𝛼-equivalence):

𝑀 ::= 0 | succ𝑀 | pred𝑀 | ifz(𝑀,𝑀,𝑀) | 𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑀 | Y𝑀 | 𝑀 ⊕𝑋𝑖
𝑀

We let n := succ𝑛 (0). The types of PCF⟨ ®𝑋 ⟩ are defined by 𝐴 ::= Bool | N | 𝐴 → 𝐴. The typing rules

are presented in Fig. 1a (where contexts are finitely many variable declarations. Also, observe that

we overload 0 and 1 as being both Booleans and integers).

For any set Σ, let !Σ indicate the set of finite multisets over Σ. We indicate a multiset 𝜇 ∈ !Σ as a

formal monomial

∏
𝑎∈Σ 𝑎

𝜇 (𝑎)
. The operational semantics is given by a reduction relation𝑀

𝜇
↠ 𝑁 ,

where 𝜇 ∈!{𝑋1, 𝑋1, . . . , 𝑋𝑛, 𝑋𝑛}, defined by the relexive and transitive closure of the rules in Fig. 1b,

which include standard PCF weak head CbN reductions, as well as parametric reductions for the

choice operator. For the reflexive closure, we set𝑀
[ ]
↠ 𝑀 ; for the transitive closure, we set𝑀

𝜇 ·𝜈
↠ 𝑃

whenever𝑀
𝜇
↠ 𝑁 and 𝑁

𝜈
↠ 𝑃 .

Example 2.2. For 𝑀1 = (1 ⊕𝑋 0) ⊕𝑋 ((1 ⊕𝑋 0) ⊕𝑋 (0 ⊕𝑋 1)) there are three reductions 𝑀
𝜇
↠ 0,

that give 𝜇1 = 𝑋𝑋, 𝜇2 = 𝜇3 = 𝑋𝑋
2

and three reductions𝑀
𝜈
↠ 1, with 𝜈1 = 𝑋 2, 𝜈2 = 𝑋 2𝑋, 𝜈3 = 𝑋

3

.

Remark 2.1 (relation with probabilistic PCF). By reading the parameters 𝑋1, . . . , 𝑋𝑛 as reals

𝑞1, . . . , 𝑞𝑛 ∈ [0, 1] the typing and reduction rules of PCF⟨ ®𝑋 ⟩ are just rules for a standard PCF with

biased choice operators𝑀 ⊕𝑞𝑖 𝑁 (where instead of adding to a multiset, we take the product in [0, 1]).
In this way, standard properties like e.g. subject reduction are easily deduced from those of pPCF.

Remark 2.2. We could have chosen to label reductions with finite words over 𝑋𝑖 , 𝑋𝑖 instead of

multisets, so that each label 𝜇 in𝑀
𝜇
↠ 𝑁 univocally determines one reduction of𝑀 . We chose multisets

because this is more natural in view of the formal manipulations discussed in the next sections. We

will quickly go back at the possibility of using words instead at the end of Section 7.
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ℎ1 ℎ2 ℎ3

𝑜

(a) Bayesian Network for
Example 2.2.

time 0 time 𝑡 + 1

𝐷 𝑁𝐷

𝑂

(b) Dynamical Bayesian Net-
work for Example 2.3

𝐷 𝐷1

𝑂1

𝐷2

𝑂2

𝐷3

𝑂3

. . .

(c) Unrolled Bayesian Network

Fig. 2. Examples of Bayesian Networks.

2.2 PCF⟨ ®𝑋 ⟩ and Graphical Probabilistic Models
Consider again the term𝑀1 from Example 2.2. What kind of probabilistic model does𝑀1 specify?

A possible illustration is provided in Fig. 2a: a simple Hidden Markov Model model with: one

observable variable 𝑜 ∈ {0, 1}, corresponding to the result of the execution of 𝑀1; three hidden

independent random variables ℎ1, ℎ2, ℎ3 ∈ {0, 1} (read: left, right), each corresponding to the choice

made at the 𝑖-th step of a reduction of 𝑀1; a conditional probability P(𝑜 = 1 | ℎ1, ℎ2, ℎ3) (and
similarly for 𝑜 = 0), modeling the probability of𝑀1 reducing to 1 following the reduction specified

by the ℎ’s. Notice that we choose three variables ℎ’s, while sometimes 𝑀1 only performs two

choices, for example in𝑀
𝑋 2

↠ 1. To solve this mismatch, we can declare that the previous reduction

of𝑀1 corresponds to both (ℎ1, ℎ2, ℎ3) = (0, 0, 0) and (ℎ1, ℎ2, ℎ3) = (0, 0, 1) in the HMM. In this way,

we have, parametrically in 𝑋,𝑋 , that P(𝑜 = 1) = (𝑋 3 + 𝑋 2𝑋 ) + 𝑋 2𝑋 + 𝑋
3

. For each probability

assignment 𝑋 := 𝑝,𝑋 := 1 − 𝑝 of the parameters, the above probability now becomes the correct

P(𝑜 = 1) = 𝑝2 + 𝑝2 (1 − 𝑝) + (1 − 𝑝)3. (1)

In fact, it is well-known that graphical models like HMM or BN can be encoded as terms of some

PCF-like language [23, 26], and the overall goal of this section is to suggest that PCF programs can

be thought as specifying complex HMM of some kind. However, due to their higher-order nature,

as well as the possibility of defining functions recursively via the fixpoint Y, a general program of

PCF⟨ ®𝑋 ⟩ need not describe a finite probabilistic models like those illustrated so far.

Example 2.3. Let𝑀2 = Y𝐵(𝑁𝐷) : Bool, where

𝐵 := 𝜆𝑓 𝑥 .ifz(𝑥, ifz(𝑂0, 𝑓 (𝑁 0), 1), ifz(𝑂1, 𝑓 (𝑁 1), 1)) : (Bool → Bool) → Bool → Bool,

𝐷 = 0 ⊕𝑋0
1 : Bool represents an initial Distribution of Booleans, 𝑁 = 𝜆𝑥.ifz(𝑥, 0 ⊕𝑋1

1, 0 ⊕𝑋2
1) :

Bool → Bool a probabilistic protocol to turn a distribution into a New one, and𝑂 = 𝜆𝑥.ifz(𝑥, 0 ⊕𝑋3

1, 0 ⊕𝑋4
1) : Bool → Bool another probabilistic protocol to Observe a Boolean value. The behaviour

of𝑀2 can be recast in pseudocode as follows:

𝑑 = sample(𝐷) ; while(true) {𝑑 = sample(𝑁𝑑) ; 𝑜 = sample(𝑂𝑑) ; if (𝑜 == 1) {return 1} }.

We see that𝑀2 describes thus a dynamic Bayesian Network (cf. [32], ch. 6) as the one illustrated in

Figg. 2b and 2c: a potentially infinite DAG constructed following an iterative pattern. Notice that

the number of hidden and observed variables is potentially infinite: each iteration produces a new

hidden variable 𝐷𝑖 (corresponding to the value produced by applying 𝑁 𝑖 times to 𝐷) and a new

observation 𝑂𝑖 . By contrast, the number of parameters of the model is finite, as it consists of the

parameters 𝑋0 − 𝑋4 in the terms 𝐷, 𝑁,𝑂 .
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In the example above, in order to reconstruct the model described by the program, an essential

ingredient is to be able to identify a certain pattern that is repeated over and over, so as to provide

a compact graphical representation of how the hidden and observed variables relate to each other.

Obviously, extracting such patterns may be very hard, or even undecidable, to do for an arbitrary

PCF⟨ ®𝑋 ⟩ program. Another solution would be to consider a somehow flat model with one observed

variable 𝑜 , corresponding to the final result of the execution (if any), conditioned on infinitely many

hidden variables ℎ1, ℎ2, ℎ3, . . . , corresponding to the unbounded number of choices made during a

terminating reduction (which may be arbitrarily long).

However, in a such a model the dependency of 𝑜 on any variable ℎ𝑖 may be rather difficult to

track explicitly, since infinitely many and arbitrarily long different reductions may lead to the same

result. As we’ll see, this dependency is in general not expressed by a polynomial as in standard

HMM or BN, but by a power series in the parameters. At the same time, the flat model provides no

insight on how such complex dependencies might be decomposed following the structure of the

program. In other words, it is not compositional.

Reconstructing the probabilistic model underlying a program of PCF⟨ ®𝑋 ⟩ is indeed tantamount

to reconstructing the semantics of the program. Still, as we’ll see, linear logic and programming

language theory provide us with precisely the goodmethods to, first, design a probabilistic semantics

capturing the relevant power series and, second, design a syntactic method (i.e. a type system) to

fully approximate the semantics of the program. This is the approach we describe through Sections

4-7. But before delving into that, let us look more closely at the inference tasks that we consider.

3 Can We Do Statistical Inference over PCF Programs?
The overall goal of this work is to demonstrate the possibility of inferring the most likely trajectories

in the models specified by higher-order probabilistic programs. In this section we provide an

informal overview on the difficulties lying ahead of this goal, and a first intuitive illustration of our

two main ideas to overcome them: the notion of tropical degree (cf. Section 5), and an adaptation of

the Viterbi algorithm from HMM to higher-order programs (cf. Sections 6 and 7).

3.1 Most Likely Explanations and the Tropical Degree
The typical inference task for a Bayesian Network is to compute themarginal probabilities associated

with an assignment ®𝜎 to the observed variables. This corresponds, intuitively, to summing up the

probabilities of all trajectories producing the outcomes ®𝜎 , that is, of all possible assignments
®𝜃 to the

hidden variables, as in (1). In a finite BN the marginal probabilities can be expressed as polynomials

in the parameters and can be computed via algorithms like e.g. the sum-product algorithm [52].

In this work we are not interested in the problem of computing marginal probabilities. Indeed,

when considering probabilistic models, like HMM, with a marked distinction between hidden and

observed variables, a natural question is to predict the most likely explanation for a given outcome:

supposing that we observed that our program returned True, what are the trajectories (i.e. the

values of the hidden variables) that have the most chances of having produced this result?

More precisely, we are interested in the following two inference problems:

(I1) given both the observation ®𝜎 and the values ®𝑞 assigned to the parameters, compute the

maximum a posteriori probabilities

max

{
P(®𝑜 = ®𝜎, ®ℎ = ®𝜃, ®𝑋 = ®𝑞)

��� ®𝜃 assignment to the hidden variables

}
(2)

or, equivalently, the minimum a posteriori negative log-probabilities:

min

{
− lnP(®𝑜 = ®𝜎, ®ℎ = ®𝜃, ®𝑋 = − ln ®𝑞)

��� ®𝜃 assignment to the hidden variables

}
(3)
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and produce one such assignment
®𝜃 to the hidden variables that provides a most likely

explanation for the observation ®𝜎 ;
(I2) given both the observation ®𝜎 and the hidden data

®𝜃 , identify the values of the parameters ®𝑋
that make the assignment

®𝜃 the most likely explanation of ®𝜎 , i.e. compute the set{
®𝑞 ∈ [0, 1]𝑛

��� ®𝜃 = argmax ®𝜌 {P(®𝑜 = ®𝜎, ®ℎ = ®𝜌, ®𝑋 = ®𝑞)}
}

(4)

Coming back again to our running example𝑀1, let us show how to compute solutions to both

problems. For (I1), considering the observation 𝜎 = 1, and fixing values e.g. 𝑋 = 𝑋 = 1

2
for the

parameters, we are led from (1) and (3) to compute

min{ − ln𝑋 2,− ln𝑋 2𝑋,− ln𝑋
3} = min{2𝑧, 2𝑧 + 𝑧, 3𝑧} = 2𝑧 = 2 ln 2, (5)

where 𝑧 = − ln𝑋, 𝑧 = − ln𝑋 , showing that the leftmost reduction is the most-likely to produce the

outcome 1 under the parameter assignment 𝑋,𝑋 ↦→ 1

2
. For (I2), for instance, we may wish to know

for which values of 𝑋,𝑋 the rightmost trajectory becomes the most likely to produce the result 1.
Using (5), we are led to find 𝑧, 𝑧 such that min{2𝑧, 2𝑧 + 𝑧, 3𝑧} = 3𝑧, yielding the condition 𝑧 ≤ 2

3
𝑧,

that is, 𝑋 ≤ 𝑋
2

3

(e.g. 𝑋 = 1

4
, 𝑋 = 3

4
).

At this point the connection with tropical geometry strikes the eye: the expression min{2𝑧, 2𝑧 +
𝑧, 3𝑧}, obtained by replacing, in (1), the outer sum by a min, is an example of a tropical polynomial,

i.e. a polynomial with min in place of + and + in place of ×. In fact, solving problems like (I1)

essentially amounts to computing marginal probabilities in a tropical setting (i.e. in which sums

are replaced by mins and multiplications by sums).

For finite HMMs, well-known algorithms like the Viterbi algorithm can be used to compute, in an

efficient way, solutions to problems (I1) and (I2). This algorithm can indeed be seen as a “tropical”

variant of the sum-product algorithm [49]. Still, as we discussed above, we are here considering

models with infinitely many hidden variables, and thus, with infinitely many trajectories. How

could one solve such an infinitary optimization problem? Here is where our fundamental idea comes

into play: while a PCF⟨ ®𝑋 ⟩ program may well produce infinitely many, arbitrary long, different

trajectories, one might well guess that, since the probability assigned with a trajectory is obtained

by multiplying the same finite number of parameters at each iteration, such probabilities should

start to decrease after a sufficiently long number of reduction steps.

For example, consider the experiment of repeatedly tossing a coin with bias 𝑋 until a head is

produced. This is represented in PCF⟨ ®𝑋 ⟩ by the program below

𝑀3 = 𝑌 (𝜆𝑥 .𝑥 ⊕𝑋 1) : Bool
The probability of getting the first head at iteration 𝑛 + 1 is thus 𝑋𝑋

𝑛
and the total probability is

expressed by the power series P(𝑀 ↠ 1) = ∑∞
𝑛=1𝑋𝑋

𝑛
, that sums over infinitely many trajectories.

At the same time, it is clear that, across all these trajectories, the most likely explanation for a head

is that we obtained it at the first iteration, since 𝑞 > 𝑞(1−𝑞)𝑛 for all possible choice 𝑞 for 𝑋 . Indeed,

all this can be restated as the observation that, for 𝑧 = − ln𝑋, 𝑧 = − ln𝑋 ∈ [0, +∞], the inf of the
sequence below is reached by its first element:

inf

𝑛

{
− ln(𝑋𝑋𝑛)

}
= inf

𝑛

{
𝑧 + 𝑛𝑧} = 𝑧.

Consider now the term 𝑀2 from Example 2.3. We will see (cf. Example 7.10) that, in a reduction

𝑀2

𝜇
↠ 1 with 𝑛 calls to Y, the monomial 𝜇 has degree 2𝑛 + 3, corresponding to 2𝑛 + 3 independent

probabilistic choices, and the probability of getting 1 starts to decrease after the second iteration.

This implies that a reduction𝑀2

𝜇
↠ 1 of maximum probability can always be found among those
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with deg 𝜇 ≤ 5. In more algebraic terms, in the power series describing the probability P(𝑀2 ↠ 1),
all monomials of degree greater than 5 are in fact dominated by some monomial of degree ≤ 5.

Moving to the negative lns, the inf over all trajectories must reduce to a finite min, in fact a tropical

polynomial, containing only the monomials of degree ≤ 5:

inf

𝑛

{
monomials of degree 𝑛

}
= min

{
monomials of degree 𝑛 ≤ 5

}
.

This value 5 is what we call the tropical degree of𝑀2, noted 𝔡(𝑀2): it is the smallest number 𝑛 for

which we can find a finite set 𝑆 of trajectories such that all trajectories in 𝑆 correspond to reductions

with at most 𝑛 choices, and any trajectory of the program is dominated by some trajectory in 𝑆 . Our

first result is that any program 𝑀 : Bool of PCF⟨ ®𝑋 ⟩ has a finite tropical degree 𝔡(𝑀) (Corollary
5.5), that is, that the most likely explanations for the results produced by𝑀 can always be found

within a finite trajectory space.

3.2 Most Likely Explanations Efficiently, via the Newton Polytope
Even once the space of trajectories for an arbitrary program 𝑀 : Bool has been reduced to a finite

one, this space may still be too large to explore in practice. For instance, consider the following

higher-order pPCF program

𝑀4 = (𝜆𝑥.𝑥 ⊕𝑝1 𝑥) (𝜆𝑥 .𝑥 ⊕𝑝2 𝑥) . . . (𝜆𝑥.𝑥 ⊕𝑝𝑛 𝑥)1,

where 𝑝1, . . . , 𝑝𝑛 ∈ [0, 1] are fixed probabilities. Observe that𝑀4 always terminates on the normal

form 1, and there are exactly 2
𝑛
reductions 𝑀4 ↠ 1, each of probability 𝑞𝜃1,1 · · ·𝑞𝜃𝑛,𝑛 , where for

𝜃 ∈ {0, 1}𝑛 we set 𝑞0,𝑖 := 𝑝𝑖 and 𝑞1,𝑖 := 1 − 𝑝𝑖 .

Suppose now we want to find the probability of a most likely reduction path of𝑀4 (to 1). Writing

𝑧0,𝑖 for − ln𝑝𝑖 and 𝑧1,𝑖 for − ln(1 − 𝑝𝑖 ), the maximum probability above is the minimum of the

corresponding negative log-probabilities:

min

𝜃 ∈{0,1}𝑛
{
𝑧𝜃1,1 + · · · + 𝑧𝜃𝑛,𝑛

}
.

Remark also that computing the argmin, instead of the min above, gives the most likely trajectories.

In either cases, a naïve approach to this computationwould inspect all possible trajectories. However,

this leads to computing and comparing 2
𝑛
different sums of positive reals, which is hardly feasible

in practice. By contrast, a more efficient strategy for computing the same minimum is to compare

(negative-log-)probabilities piece after piece, that is, to compute:

min

{
𝑧0,1, 𝑧1,1

}
+ · · · +min

{
𝑧0,𝑛, 𝑧1,𝑛

}
.

In this case we are computing 𝑛 mins and summing 𝑛 reals. Moreover, if we keep track, each time

we compute a min, of the value 𝜃𝑖 ∈ {0, 1} producing the minimum, at the end of the computation

we even obtain the most likely trajectories 𝜃 ∈ {0, 1}𝑛 .
This simple example illustrates the idea behind the already mentioned Viterbi algorithm. Both

this algorithm and the sum-product algorithm for Bayesian networks can be seen as instances of a

general "distributive law" algorithm [2]. Very roughly, the algorithm exploits the remark that in

occurrences of the distributive law of (semi)rings like e.g. (𝑥 +𝑦) · (𝑧 +𝑤) = 𝑥𝑧 +𝑥𝑤 +𝑦𝑧 +𝑦𝑤 there

are, often, less operations to perform to evaluate the left-hand term, compared to the right-hand.

So, whenever one is asked to evaluate a possibly too large sum of monomials, it is wise to try to use

distributivity from right to left as much as possible, so as to express this sum as a product of simpler

polynomials. In the case above, we reduced the problem of computing a min across 2
𝑛
(tropical)

monomials 𝜇𝜃 := 𝑧𝜃1,1 + · · · + 𝑧𝜃𝑛,𝑛 to that of computing the sum (indeed, the tropical product) of 𝑛

polynomials𝑚𝑖 := min{𝑧0,𝑖 , 𝑧1,𝑖 }.
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Let us write now the term 𝑀4 in PCF⟨ ®𝑋 ⟩, by replacing probabilities with formal parameters,

𝑀4 = (𝜆𝑥.𝑥 ⊕𝑋1
𝑥) (𝜆𝑥 .𝑥 ⊕𝑋2

𝑥) . . . (𝜆𝑥 .𝑥 ⊕𝑋𝑛
𝑥)1. Then the distributive law argument as above

suggests moving from considering all 2
𝑛
trajectories and look instead at the tropical product:

min{𝑋1, 𝑋1} + · · · +min{𝑋𝑛, 𝑋𝑛} (6)

But this time, since the 𝑋𝑖 , 𝑋𝑖 are not reals but just formal variables, it is not clear how to obtain a

tropical polynomial from it other than by applying distributivity in wrong sense, that is, from left to

right, thus getting back to an exponentially large min.

As we discuss through Sections 6 and 7, this is the point where tropical geometry comes to rescue

us. In Section 6 we illustrate how we manipulate the Newton polytope, a 𝑛-dimension polyhedron

that is an invariant of tropical polynomials, in order to extract a not too large polynomial from a

sum like (6) and, more generally, to compute the tropical product of polynomials in an efficient

way. Then, in Section 7, we will exploit this method to design an intersection type system Ptrop that
enumerates the most likely trajectories of PCF⟨ ®𝑋 ⟩ programs: intuitively, type derivations select the

most likely trajectories by applying our tropical version of the Viterbi algorithm recursively on the

structure of the program. This will enable us to explore, in polynomial time, a space of trajectories

of size exponential in the size of the program, providing a significant speed-up to the search for

most-likely reductions.

4 Parametric Weighted Relational Semantics
In this section we introduce a semantics for PCF⟨ ®𝑋 ⟩-programs given in terms of formal power series

whose variables include ®𝑋 . This semantics is a parameterized version of the weighted relational

semantics from [35]. While the presentation of this semantics requires us to combine algebraic and

categorical language, the key points to look at for the following are equations (7), (8) and (9), which

show how the formal power series in the semantics are related to the probabilities of the execution

paths of PCF⟨ ®𝑋 ⟩-programs, as well as the fundamental observation, in Subsection 4.4, that distinct

formal power series may induce the same (tropical) analytic function.

4.1 Formal Power Series
In the following, by semiring we mean commutative and with units 0 and 1. A semiring is continuous

if it is ordered (compatible with + and ·) and (among other properties) it admits infinite sums.

We will consider the following continuous semirings (cf. [35]): {0, 1} with Boolean addition and

multiplication, N∞
with standard addition and multiplication, R∞≥0 with standard addition and

multiplication, and T, the tropical semiring (also noted L, cf. [6]), corresponding toR∞≥0 with reversed
order, with min as + and addition as ·.

We indicate multisets 𝜇 ∈ !Σ = Σ → N as formal monomials, which allows us to retain standard

notations for polynomials/power series. For instance, the multiset 𝜇 ∈ !{0, 1, 2}with 𝜇 (0) = 2, 𝜇 (1) =
1, 𝜇 (2) = 0 will be denoted as 0

2
1 (or 0

2
12

0
). Often, for clarity, we introduce a set 𝑥Σ of ♯Σ fresh

formal variables 𝑥𝑎 , one for each 𝑎 ∈ Σ, and we denote 𝜇 ∈ !Σ by the formal monomial

∏
𝑎∈Σ 𝑥

𝜇 (𝑎)
𝑎 ,

also denoted 𝑥𝜇 . For instance, 021 becomes the standard 𝑥2
0
𝑥1 (or 𝑥

2

0
𝑥1𝑥

0

2
).

Let Σ be a set and 𝑄 a semiring. We call 𝑄{{Σ}} the set of functions !Σ → 𝑄 , and its elements are

called formal power series ( fps, for short) over 𝑄 with (commuting) variables the elements of Σ. Given
𝑠 ∈ 𝑄{{Σ}}, the image 𝑠𝜇 ∈ 𝑄 of 𝜇 ∈!Σ is called the coefficient of 𝑠 at 𝜇 and supp(𝑠) :=!Σ − 𝑠−10 is
called the support supp(𝑠) of 𝑠 . A fps 𝑠 is all-one when all coefficients 𝑠𝜇 are either 0 or 1. When Σ
is finite and the support is finite, 𝑠 is a formal polynomial. We let 𝑄{Σ} ⊆ 𝑄{{Σ}} indicate the set
of formal polynomials. As usual, we visualize a fps 𝑠 ∈ 𝑄{{Σ}} as the formal sum 𝑠 =

∑
𝜇∈!Σ 𝑠𝜇𝑥

𝜇
,

e.g. 𝑠 = 𝑠
0
0
1
0 + 𝑠

0
2
1
𝑥2
0
𝑥1 + 𝑠

10
2𝑥0𝑥

2

1
∈ 𝑄{{{0, 1}}}. If Σ = Σ1 + · · · + Σ𝑛 , then 𝑄{{Σ}} is canonically
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isomorphic to the set of functions !Σ1 × · · · ×!Σ𝑛 → 𝑄 , which we call 𝑄{{Σ1, · · · , Σ𝑛}}, whose
elements can be visualized as formal power series with multiple sets 𝑥Σ1 , . . . , 𝑥Σ𝑛 of variables.

The notations introduced above are implicitly compatible with the fact that 𝑄{{Σ}} is a commu-

tative monoid with pointwise addition, with 0 being the fps

∑
𝜇 0𝑥

𝜇
. In fact, 𝑄{{Σ}} is a semiring

with multiplication given by the usual Cauchy’s formula: (𝑠𝑠′)𝜇 :=
∑

𝜌+𝜂=𝜇 𝑠𝜌𝑠
′
𝜂 (this is a sum in 𝑄

and exists because it is finite, since 𝜇 is), i.e. 𝑠𝑠′ =
∑

𝜌,𝜇 𝑠𝜌𝑠
′
𝜂 𝑥

𝜌+𝜂
. The 1 for this multiplication is the

polynomial 1 with our notation, i.e. 1𝑥 [ ]
. Polynomials form a sub-semiring for this structure. If

𝑄 is continuous, 𝑄{{Σ}} is also continuous with respect to the pointwise partial order (the bottom

element is 0 and supremas are pointwise). The evaluation map at 𝑞 ∈ 𝑄Σ
is the continuous semiring

homomorphism 𝑄{{Σ}} → 𝑄 sending

∑
𝜇 𝑠𝜇𝑥

𝜇
to

∑
𝜇 𝑠𝜇𝑞

𝜇
, where 𝑞𝜇 :=

∏
𝑎∈Σ 𝑞

𝜇 (𝑎)
𝑎 ∈ 𝑄 .

Any continuous semiring homomorphism𝑄 → 𝑄 ′
lifts to a continuous semiring homomorphism

𝑄{{Σ}} → 𝑄 ′{{Σ}} by acting on the coefficients. Remark that sum, products, evaluation map and

lifts of homomorphisms above, are all compatible with the bijection 𝑄{{Σ}} ≃ 𝑄{{Σ1, · · · , Σ𝑛}} and
so they are compatible with the multiple variables notation; for example, the evaluation map at

(𝑞1, . . . , 𝑞𝑛) ∈ 𝑄Σ1 × · · · × 𝑄Σ𝑛
would now go from 𝑄{{Σ1, · · · , Σ𝑛}} to 𝑄 . Also, remark that for

𝑄 = 𝑄 ′{{𝑍 }}, a fps 𝑠 ∈ 𝑄{{𝑋 }} = (𝑄 ′{{𝑍 }}){{𝑋 }} is the same data as a fps 𝑠 ∈ 𝑄 ′{{𝑍,𝑋 }}.
We have the following folklore result (proven in the extended version [7]), where for any

continuous semiring 𝑄 , 𝑞 ∈ 𝑄 and 𝑛 ∈ N∞
, we write 𝑛𝑞 :=

∑𝑛
𝑖=1 𝑞 in 𝑄 .

Proposition 4.1. N∞{{Σ}} is the free continuous commutative semiring on a finite set Σ. For any
continuous commutative semiring 𝑄 and 𝑞 ∈ 𝑄Σ

, the unique map realizing the universal property is

ev𝑞 : N∞{{Σ}} → 𝑄 , defined by ev𝑞 (𝑠) :=
∑

𝜇 𝑠𝜇𝑞
𝜇
.

For a given continuous semiring 𝑄 , the category 𝑄Rel [35] has sets as objects and matrices

𝑄𝑋×𝑌
as arrows 𝑋 → 𝑌 . The category 𝑄Rel! is the coKleisli category of 𝑄Rel wrt the multiset

comonad !, so its arrows 𝑋 → 𝑌 are matrices in 𝑄 !𝑋×𝑌
. 𝑄Rel! is cartesian closed, with product

𝑋 + 𝑌 , terminal object 1 = {★} and exponential !𝑋 × 𝑌 . Observe that sets in 𝑄Rel! play the role

of indices, and a matrix 𝑡 ∈ 𝑄 !𝑋×𝑌
is the same data as a 𝑌 -indexed family of formal power series

with commuting variables in 𝑋 , namely 𝑡 = (∑𝜇∈!𝑋 𝑡𝜇,𝑦𝑥
𝜇)𝑦∈𝑌 ∈ 𝑄{{𝑋 }}𝑌 . This identification is

compatible with units and compositions (and linearity): from now on, for us𝑄Rel! has sets as object
and 𝑄{{𝑋 }}𝑌 as homsets 𝑋 → 𝑌 .

Lastly, notice that for any continuous semiring homomorphism 𝜃 : 𝑄 → 𝑄 ′
, the induced one

𝑄{{Σ}} → 𝑄 ′{{Σ}} yields a (cartesian closed) identity-on-objects functor 𝐹𝜃 : 𝑄Rel! → 𝑄 ′Rel!.

4.2 Interpreting (Probabilistic) PCF-Programs as Formal Power Series
Before introducing the interpretation of PCF⟨ ®𝑋 ⟩-typing derivations, let us recall the interpretation

J−K𝑄 of standard PCF in the category 𝑄Rel!, for any continuous semiring 𝑄 [35]. Actually, [35]

introduces a language PCF
𝑄
with weighted terms 𝑞 ·𝑀 , for 𝑞 is an element of𝑄 , and a generic choice

operator 𝑀 or 𝑁 , and it is shown that, for any 𝑄 , PCF𝑄 can always be interpreted inside 𝑄Rel!.
The basic types Bool,N are interpreted by the sets {0, 1} and N, respectively, and arrow types

𝐴 → 𝐵 are interpreted as !J𝐴K × J𝐵K. A derivation of 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑀 : 𝐵 is interpreted as a

fps in 𝑄{{J𝐴1K, . . . , J𝐴𝑛K}}J𝐵K
, i.e. a J𝐵K-family of fps with variables in J𝐴1K, . . . , J𝐴𝑛K. For instance,

a closed program 𝑀 : Bool is interpreted as a fps in 𝑄{{∅}}{0,1} ≃ 𝑄 {0,1}
, in other words, by two

elements
1 J𝑀K0, J𝑀K1 ∈ 𝑄 . Weighted and choice terms are interpreted via J𝑞 ·𝑀K = 𝑞 · J𝑀K and

J𝑀 or 𝑁 K = J𝑀K + J𝑁 K.
One obtains in this way an interpretation of usual probabilistic PCF [21] (pPCF for short) in

R∞≥0Rel!, translating it into PCF
R∞≥0 via𝑀 ⊕𝑝 𝑁 := 𝑝 ·𝑀 or (1 − 𝑝) · 𝑁 . In fact, this interpretation

1
As common, we simply write JΓ ⊢ 𝑀 : 𝐴K or even just J𝑀K, but we really mean J𝜋K for 𝜋 a given typing derivation for𝑀 .
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precisely captures the probabilistic execution of closed terms [35]: the interpretation J𝑀KR
∞
≥0 ∈

(R∞≥0) {0,1} of a program 𝑀 : Bool consists in two real numbers J𝑀KR
∞
≥0

0
, J𝑀KR

∞
≥0

1
, describing the

probability that𝑀 reduces to i = 0, 1 respectively:

J𝑀KR
∞
≥0

i = P(𝑀 ↠ i) =
∑︁
𝑀

𝑝
↠i

𝑝 (where𝑀
𝑝
↠ i indicates a reduction of probability 𝑝). (7)

One also obtains an interpretation of pPCF in TRel! by taking negative log-probabilities − ln𝑝 ∈ T
in place of 𝑝 , that is,𝑀 ⊕𝑝 𝑁 := (− ln𝑝) ·𝑀 or (− ln(1− 𝑝)) ·𝑁 . Since or is now interpreted by the

min operation, this interpretation describes the negative log-probability of a most likely reduction:

J𝑀KTi = inf

{
− ln𝑝 | 𝑀

𝑝
↠ i

}
= − ln sup

{
𝑝 | 𝑀

𝑝
↠ i

}
. (8)

Example 4.2. For the closed pPCF term𝑀 = 1⊕𝑝 (1⊕𝑝 1), we have J𝑀KR
∞
≥0

1
= 𝑝+𝑝 (1−𝑝)+(1−𝑝)2 =

1, i.e. the sum of the probabilities of all trajectories leading to 1, and J𝑀KT
1
= min{𝑧, 𝑧 +𝑤, 2𝑤} =

min{𝑧, 2𝑤}, where 𝑧 = − ln𝑝,𝑤 = − ln(1 − 𝑝), yielding e.g. − ln 2 when 𝑝 = 1 − 𝑝 = 1

2
.

4.3 Interpreting PCF⟨ ®𝑋 ⟩-Programs as Formal Power Series
We now show how to interpret PCF⟨ ®𝑋 ⟩ inside any category𝑄Rel!. In fact, we interpret it in a “free

way”, factorizing any such interpretation. Let X be the set {𝑋1, 𝑋1, . . . , 𝑋𝑛, 𝑋𝑛}. We can translate

PCF⟨ ®𝑋 ⟩ to PCFN∞ {{X}}
via𝑀 ⊕𝑋𝑖

𝑁 := 𝑋𝑖 ·𝑀 or𝑋𝑖 ·𝑁 , and J_KN∞ {{X}}
gives then an interpretation of

PCF⟨ ®𝑋 ⟩ inside (N∞{{X}})Rel!. We call it the parametric interpretation and note it J_K𝑋1,...,𝑋𝑛
. That is,

JΓ ⊢ 𝑀 : 𝐴K𝑋1,...,𝑋𝑛 ∈ ((N∞{{𝑋1, 𝑋1, . . . , 𝑋𝑛, 𝑋𝑛}}){{JΓK}})J𝐴K =(N∞{{𝑋1, 𝑋1, . . . , 𝑋𝑛, 𝑋𝑛, JΓK}})J𝐴K
. For

e.g. 𝑛 = 1, it is a J𝐴K-family of fps

∑
𝜇 (
∑

𝑖, 𝑗 𝑠𝑖 𝑗𝜇𝑋
𝑖𝑋

𝑗 )𝑥𝜇 =
∑

𝑖, 𝑗,𝜇 𝑠𝑖 𝑗𝜇𝑋
𝑖𝑋

𝑗
𝑥𝜇 (𝑖, 𝑗 ∈ N, 𝜇 ∈ !JΓK).

Example 4.3. The parametric interpretation of the term𝑀 = 1⊕𝑋 (1⊕𝑋 1) : Bool (the parametriza-

tion of the one in Example 4.2) consists in two fps J𝑀K𝑋,𝑋
0

, J𝑀K𝑋,𝑋
1

∈ N∞{{𝑋,𝑋 }}, namely J𝑀K𝑋,𝑋
0

= 0

and J𝑀K𝑋,𝑋
1

= 𝑋 + 𝑋𝑋 + 𝑋
2

, which represent the (weights of the) possible reductions.

Directly from [35, Theorem V.6], we get that for a closed term𝑀 of type e.g. Bool, and i ∈ {0, 1},

J𝑀K𝑋1,...,𝑋𝑛

i =
∑︁

®𝑖,®𝑗∈N𝑛
♯(®𝑖, ®𝑗)𝑋 𝑖1

1
𝑋

𝑗1
1
. . . 𝑋 𝑖𝑛

𝑛 𝑋
𝑗𝑛
𝑛 (9)

where ♯(®𝑖, ®𝑗) is the number of reductions to i of weight 𝑋 𝑖1
1
𝑋

𝑗1
1
. . . 𝑋

𝑖𝑛
𝑛 𝑋

𝑗𝑛
𝑛 .

Example 4.4. Remember 𝑀3 = Y(𝜆𝑥 .1 ⊕𝑋 𝑥) : Bool from the previous section. Its parametric

interpretation yields two fps J𝑀1K𝑋,𝑋
0

, J𝑀1K𝑋,𝑋
1

where J𝑀2K𝑋,𝑋
0

= 0, as𝑀2 cannot reduce to 0, and

J𝑀2K𝑋,𝑋
1

=
∑

𝑛 𝑋𝑋
𝑛
describes the weights 𝜇 ≃ 𝑛 of the infinitely many trajectories𝑀2

𝜇
↠ 1.

The parametric interpretation is indeed a parametrisation of the semantics in [35]: by Propo-

sition 4.1, any choice 𝑞 ∈ 𝑄X of actual values of parameters in a 𝑄 , canonically induces an

interpretation of PCF⟨ ®𝑋 ⟩ inside 𝑄Rel! via the functor 𝐹ev𝑞 : (N∞{{X}})Rel! → 𝑄Rel!. One easily

checks that, if

[
𝑋 := 𝑝𝑋
𝑋 := 𝑝

𝑋

]
∈ (R∞≥0)X then the produced interpretation of a term 𝑀 of PCF⟨ ®𝑋 ⟩ coin-

cides with the one of the PCF
R∞≥0-term𝑀 [𝑋 := 𝑝𝑋 , 𝑋 := 𝑝

𝑋
]. Similarly, if 𝜏 ∈ TX associates 𝑋𝑖 , 𝑋𝑖

with negative log-probabilities − ln𝑝𝑖 ,− ln(1 − 𝑝𝑖 ), the produced interpretation of PCF⟨ ®𝑋 ⟩ terms

coincides with the one of the corresponding PCF
T
-terms.

Example 4.5. For𝑀 from Example 4.3, choosing the values 𝑝, 1 − 𝑝 ∈ R∞≥0 for 𝑋,𝑋 turns the fps

J𝑀K𝑋,𝑋
1

= 𝑋 + 𝑋𝑋 + 𝑋
2

into the real number J𝑀KR
∞
≥0

1
= 𝑝 + 𝑝 (1 − 𝑝) + (1 − 𝑝)2. Evaluating 𝑋,𝑋 as

− ln𝑝,− ln(1 − 𝑝) ∈ T turns it into J𝑀KT
1
= min {− ln𝑝,−2 ln(1 − 𝑝)} (cf. Example 4.2)..
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Example 4.6. Consider 𝑀3 from Example 4.4; choosing 𝑋,𝑋 as 𝑝, 1 − 𝑝 ∈ R∞≥0 turns the fps

J𝑀2K𝑋,𝑋
1

=
∑

𝑛 𝑋𝑋
𝑛
into J𝑀2K

R∞≥0
1

=
∑

𝑛 𝑝 (1−𝑝)𝑛 =
𝑝

1−𝑝 (if 𝑝 ≠ 0). Evaluating them as− ln𝑝,− ln(1−
𝑝) ∈ T turns it into J𝑀KT

1
= inf𝑛{− ln𝑝 − 𝑛 ln(1 − 𝑝)} = − ln𝑝 .

4.4 Tropical Analytic Functions
By evaluating at points, formal power series define analytic functions via the map (_)! : 𝑄{{Σ}} →
[𝑄Σ → 𝑄], where 𝑠 ! (𝑞) evaluates 𝑠 at 𝑞, i.e. 𝑠 ! (𝑞) = ∑

𝜇∈ !𝑋 𝑠𝜇𝑞
𝜇
. The central example we consider

is the case of the analytic functions for 𝑄 = T:

Definition 4.7. Let Σ have 𝑛 elements. The functions T𝑛 → T of shape 𝑠 !, for a fps 𝑠 ∈ T{{Σ}}, are
called tropical analytic functions (taf for short, aka tropical power series) [6, 43]. Concretely,

𝑠 ! (𝑥1, . . . , 𝑥𝑛) = inf

𝜇∈ !Σ

{
𝑠𝜇 + 𝜇 · 𝑥

}
with 𝜇 · 𝑥 :=

∑𝑛
𝑖=1 𝜇 (𝑖)𝑥𝑖 . When 𝑠 is a formal polynomial, the inf above is a min and 𝑠 ! is then called

a tropical polynomial function. These are precisely the piecewise linear functions at the heart of

tropical geometry, as we discuss in Section 6.

The map (_)! from fps to the corresponding analytic function is not, in general, injective. This

means that different formal power series may well induce the same analytic function. Notably,

injectivity fails for 𝑄 = T, as the following example shows.

Example 4.8. Let 𝑄 := T, Σ = {∗}. For a fixed 𝑝 ∈ T, let 𝑡 := ∑
𝑛 𝑝𝑥

𝑛 ∈ T{{𝑥}} and 𝑠 := 𝑝 ∈ T{{𝑥}}.
Then 𝑡 ≠ 𝑠 but 𝑡 ! = 𝑠 !. In fact 𝑡 ! (𝑞) = 𝑝 + inf𝑛 𝑛𝑞 = 𝑝 = 𝑠 ! (𝑞) for all 𝑞 ∈ T.

As it will be seen since the next section, it is precisely this mismatch between tropical power series

and the corresponding analytic functions that enables a combinatorial and efficient exploration of

the most likely behaviour of probabilistic programs.

Remark 4.1. The considerations above could be rephrased by considering a category 𝑄An whose

objects are sets and the homset from Σ to 𝑌 is 𝑄An(Σ, 𝑌 ), the set of functions 𝑠 ! : 𝑄Σ → 𝑄𝑌
defined

by 𝑠 ! (𝑞)𝑦 =
∑

𝜇∈ !𝑋 𝑠𝜇,𝑦𝑞
𝜇
, for some 𝑌 -indexed family 𝑠 ∈ 𝑄{{Σ}}𝑌 of fps.

Via the map (_)!, any program Γ ⊢ 𝑀 : 𝐴 yields then a function J𝑀K! : 𝑄JΓK → 𝑄J𝐴K
, and one may

ask what is the status of such interpretation. In the extended version [7] it is shown that (_)! turns
the exponential of TRel! into a weak exponential in TAn (cf. [40]), so that the interpretation J−K!

produces a non-extensional model of PCF⟨ ®𝑋 ⟩, that is, one that satisfies the 𝛽-rule but not the 𝜂-rule.

5 The Tropical Degree
Suppose 𝑀 is a probabilistic algorithm that iterates a given protocol until a certain condition is

satisfied, and suppose that the computation of 𝑀 ends after 𝑛 iterations producing the value 𝑉 .

As we observed in Section 3, we can expect that the probability of producing 𝑉 after no less than

𝑛 steps does not increase when 𝑛 is large enough. In this section we show that, in PCF⟨ ®𝑋 ⟩, this
intuition is correct and reflects a general phenomenon captured by the tropical semantics.

To state our general result, we first show how to associate, canonically, a discrete power series

(i.e. with coefficients in N∞
) with a taf called the tropicalization of the power series.

The inclusion 𝜄 ∈ 𝑄{{Σ}}Σ that sends any element 𝑋 ∈ Σ onto itself induces the homomorphism

ev𝜄 : N∞{{Σ}} → 𝑄{{Σ}}. If𝑄 is an idempotent semiring, one can check that ev𝜄 turns all 0 coefficients

into 0 ∈ 𝑄 and all coefficients 𝑛 ≠ 0 onto 1 ∈ 𝑄 . That is, it gives the characteristic series of

the support: ev𝜄 (𝑠) =
∑

𝜇∈supp(𝑠 ) 𝑥
𝜇
. Composed with (−)!, this yields a map ev!𝜄 : N∞{{Σ}}𝑌 →

𝑄An(Σ, 𝑌 ). For 𝑄 := T, which is idempotent since + = inf, the above lines yield the following:
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Definition 5.1 (tropicalization). Let Σ a finite set. The homomorphism ev𝜄 : N∞{{Σ}} → T{{Σ}} is
called t. Remark that, in terms of real numbers, t(𝑠) = ∑

𝜇∈supp(𝑠 ) 0𝑥
𝜇
(the other coefficients, i.e.

the t(𝑠)𝜇 for 𝜇 ∉ supp(𝑠), being +∞). We call t! := ev!𝜄 : N
∞{{Σ}}𝑌 → [TΣ → T𝑌 ] the tropicalization

map. For 𝑠 ∈ N∞{{Σ}}𝑌 , the tropicalization t!𝑠 : TΣ → T𝑌 of 𝑠 is the taf concretely given by:

t!𝑠 (𝑥)𝑦 = inf

𝜇∈supp(𝑠𝑦 )
𝜇 · 𝑥 = t!𝑠𝑦 (𝑥).

Example 5.2. Let 𝑠 ∈ N∞{{𝑋,𝑋 }}. Then t!𝑠 : T2 → T is t!𝑠 (𝑋 := 𝑥1, 𝑋 := 𝑥2) = inf𝜇∈supp(𝑠 ) 𝜇 (𝑋 ) ·
𝑥1 + 𝜇 (𝑋 ) · 𝑥2. For instance, t!𝑠 (𝑋 := 0, 𝑋 := +∞) = inf𝜇∈supp(𝑠 ) {𝜇 (𝑋 ) · ∞}. It is immediate to see

that this value is 0 if there is 𝜇 such that 𝑠𝜇 ≠ 0 and 𝜇 (𝑋 ) = 0, while it is +∞ otherwise. For instance,

for 𝑀 = 1 ⊕𝑋 0, we have t!J𝑀K1 = 𝑋 ∈ N∞{{𝑋,𝑋 }}, and t!J𝑀K1 (𝑋 := 0, 𝑋 := +∞) = 0. Similarly,

t!J𝑀K0 (𝑋 := 0, 𝑋 := +∞) = +∞. The first corresponds to the presence of the reduction 𝑀
𝑋
↠ 1,

the second to the absence of reduction𝑀
𝑋
↠ 0. In fact, the choice 𝑋 := 0, 𝑋 := +∞ corresponds to

choosing the left side of a probabilistic choice with probability 1 (so 0 for the right side), and t!J𝑀Ki
returns thus negative log-probabilities when computed on negative log-probabilities.

The situation of the previous example is not a coincidence. In fact, via tropicalisation, a program

𝑀 : Bool is turned into two taf t!J𝑀Ki : TX → Twhich compute the negative log-probability of most

likely reductions of𝑀 , as the following proposition shows. This is therefore a “parametrization”

(allowing all choices of probabilities) of [6, Corollary 10] or [35, Theorem V.6].

Proposition 5.3. Given𝑀 : Bool, let 𝑝 ∈ [0, 1]X any assignment of probabilities 𝑝 to the parame-

ters. Then (remark that𝑀 [𝑋 := 𝑝𝑋 ] is a PCF[0,1]-term)

(t!J𝑀KXi ) (𝑋 := − ln𝑝𝑋 , 𝑋 := − ln𝑝
𝑋
) = − ln sup {𝑞 | 𝑀 [𝑋 := 𝑝𝑋 ]

𝑞
↠ i}.

The negative log-probabilities above are computed as an inf across all trajectories leading to i.
Our goal is now to show that, independently of the parameters, such an inf is always found within a

finite set of trajectories (and is, therefore, a min). The key result to get there is the following:

Proposition 5.4. Let 𝑘 ∈ N and {𝑠𝑛 | 𝑛 ∈ N𝑘 } ⊆ N∞
. Then there exists a finite set 𝑆 ⊆ N𝑘 such

that 𝑠𝑛 < +∞ for all 𝑛 ∈ 𝑆 and, for all 𝑥 ∈ T𝑛 , inf𝑛∈N𝑘 {𝑛𝑥 + 𝑠𝑛} = min𝑛∈𝑆 {𝑛𝑥 + 𝑠𝑛}.
Proof. Fix the well-founded order𝑚 ≺ 𝑛 on N𝑘 by saying that𝑚𝑖 ≤ 𝑛𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 and

there is at least one 1 ≤ 𝑗 ≤ 𝑘 such that 𝑚 𝑗 < 𝑛 𝑗 . We claim that we can let 𝑆 := {𝑛 ∈ N𝑘 |
𝑠𝑛 < +∞ and for all𝑚 ≺ 𝑛 one has 𝑠𝑚 > 𝑠𝑛}. Indeed, if 𝑆 is infinite then one can easily see, using

König’s Lemma, that there is a chain 𝑚0 ≺ 𝑚1 ≺ · · · ⊆ 𝑆 . But by definition of 𝑆 this gives a

chain 𝑠𝑚0
> 𝑠𝑚1

> · · · ⊆ N, which is absurd. We have thus shown that 𝑆 is finite. For the claimed

equation, Wlog 𝑆 ≠ ∅ (otherwise on the one hand min := +∞, and on the other hand one can easily

see, by induction on ≺, that inf = +∞). Now fix 𝑥 ∈ T𝑛 . We show by induction on 𝑛 wrt ≺, that
∀𝑛 ∈ N𝑘 , ∃𝑚 ∈ 𝑆 such that 𝑠𝑚 +𝑚𝑥 ≤ 𝑠𝑛 + 𝑛𝑥 . Notice that this proves the desired equation.

Case 𝑛 = 0: Wlog 𝑛 ∉ 𝑆 . By definition of 𝑆 , 𝑠𝑛 = +∞ and so any𝑚 ∈ 𝑆 ≠ ∅ works.

Case 𝑛≻0: Wlog 𝑛 ∉ 𝑆 . By definition of 𝑆 , we have two cases: either 𝑠𝑛 = +∞, which is done as

above. Or there is 𝑛′ ≺ 𝑛 with 𝑠𝑛′ ≤ 𝑠𝑛 . But then 𝑠𝑛′ +𝑛′𝑥 ≤ 𝑠𝑛 +𝑛′𝑥≤𝑠𝑛 + (𝑛 −𝑛′)𝑥 +𝑛′𝑥 = 𝑠𝑛 +𝑛𝑥 .
If 𝑛′ ∈ 𝑆 , take𝑚 := 𝑛′. If 𝑛′ ∉ 𝑆 , take the𝑚 ∈ 𝑆 with 𝑠𝑚 +𝑚𝑥 ≤ 𝑠𝑛′ + 𝑛′𝑥 given by the IH on 𝑛′. □

Remark 5.1 (not all taf are polynomials). An essential ingredient in the (proof of the) result

above is that of considering fps with coefficients in a discrete set (like N∞
). In general, a fps with

coefficients in T needs not be equivalent to a polynomial: consider the fps 𝑠 =
∑

𝑛∈N
1

2
𝑛 𝑥

𝑛 ∈ T{{𝑥}};
the corresponding tropical analytic function 𝑠 ! : T → T is not a polynomial function, since 𝑠 ! (0) =
inf𝑛{𝑛 · 0 + 1/2𝑛} = 0 is an inf that cannot be reduced to a min.
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Corollary 5.5. For all terms 𝑀 : Bool
𝑛 → N (i.e. Bool → · · · → Bool → N) of PCF⟨ ®𝑋 ⟩and

𝑖 ∈ N there is an all-one polynomial 𝑠 ∈ T{X ∪ {0, 1}𝑛} with t!J𝑀Ki = 𝑠 ! and supp(𝑠) ⊆ supp(J𝑀Ki).

Proof. We have J𝑀Ki ∈ N∞{{Σ}}, for Σ := {𝑋1, 𝑋 1, . . . , 𝑋𝑘 , 𝑋𝑘 } ∪ {0, 1}𝑛 . Then we can identify

!Σ ≃ N2𝑘+2𝑛
. Let 𝑠𝜇 := 0 if 𝜇 ∈ supp(J𝑀Ki) and := +∞ otherwise. Then Proposition 5.4 gives a finite

𝑆 ⊆!Σ such that t!J𝑀Ki (𝑥) = inf𝜇∈supp(J𝑀Ki ) {𝜇 ·𝑥} = inf𝜇∈N𝑘 {𝜇 ·𝑥 + 𝑠𝜇} = min𝜇∈𝑆 {𝜇 ·𝑥} = 𝑠 ! (𝑥), for
the polynomial 𝑠 :=

∑
𝜇∈𝑆 1T𝑥

𝜇

Σ ∈ T{Σ}. Moreover, remark that supp(𝑠) = 𝑆 . Then, for 𝜇 ∈ supp(𝑠),
from Proposition 5.4, we have 𝑠𝜇 < +∞, so 𝜇 ∈ supp(J𝑀Ki) by definition of 𝑠𝜇 . □

Intuitively, the polynomial 𝑠 takes into account only a finite number of the trajectories of𝑀 . Yet,

the result above shows that the sup negative-log-probability across all trajectories is always found

within the finite set 𝑆 selected by 𝑠 (and is, therefore, a max). This leads to the following:

Definition 5.6. Let𝑀 : Bool
𝑛 → N in PCF⟨ ®𝑋 ⟩. For 𝑖 ∈ N, the tropical degree 𝔡𝑖 (𝑀) of𝑀 at 𝑖 is the

minimum degree of an all-one polynomial 𝑠 ∈ T{X} with t!J𝑀Ki = 𝑠 ! and supp(𝑠) ⊆ supp(J𝑀Ki).

The tropical degree expresses the fact that the sup of the probabilities of the execution paths

of𝑀 to i can be obtained by only looking at a finite number of execution paths whose degree is

at most 𝔡i (𝑀). For example, let us expand the definition above for a closed term 𝑀 : Bool with

parameters 𝑋,𝑋 and let, say, i = 0. Remember that J𝑀K𝑋0 =
∑

𝑖, 𝑗∈N ♯(𝑖, 𝑗)𝑋 𝑖𝑋
𝑗
, with ♯(𝑖, 𝑗) the

number of reductions to 0 of weight 𝑋 𝑖𝑋
𝑗
. Remembering Proposition 5.3 too, 𝔡0 (𝑀) is the smallest

𝑑 ∈ N such that there is a finite 𝑆 ⊆ N2
with

1. max(𝑖, 𝑗 ) ∈𝑆 𝑖 + 𝑗 = 𝑑 ,

2. for all (𝑖, 𝑗) ∈ 𝑆 there is a reduction 𝑀↠0 of weight 𝑋 𝑖𝑋
𝑗
,

3. for all 𝑝 ∈ [0, 1], the sup of all probabilities 𝑃 across any reduction𝑀 [𝑋 := 𝑝] 𝑃
↠ 0 equals the

max across the reductions chosen in 𝑆 : sup{𝑃 |𝑀 [𝑋 := 𝑝] 𝑃
↠ 0} = max(𝑖, 𝑗 ) ∈𝑆 𝑝

𝑖 (1−𝑝) 𝑗 .
For example, one can easily see that the term𝑀3 from Section 3 satisfies 𝔡(𝑀3) = 1.

Example 5.7. Let𝑀 : Bool with parameters 𝑋,𝑋 . Suppose that𝑀 ↠ i, for a fixed 𝑖 ∈ {0, 1}. Let
us show that 𝔡i (i⊕𝑋 (𝑀 ⊕𝑋 Ω)) = 1, where Ω := Y𝐼 : Bool is non-terminating. This means showing

that 1 is the smallest 𝑑 ∈ N for which there is a finite 𝑆 ⊆ N2
satisfying 1), 2), 3) from above. Observe

that 𝑑 cannot be 0, since there is no reduction i ⊕𝑋 (𝑀 ⊕𝑋 Ω) 𝑋 0𝑋
0

↠ i. Let us show that 𝑑 = 1 satisfies

all the required properties: the point is to guess the right finite set of reductions of maximal degree

1. Take 𝑆 = {
[
𝑋 = 1

𝑋 = 0

]
} ⊆ N2 ≃!{𝑋,𝑋 }, i.e. select the reduction i ⊕𝑋 (𝑀 ⊕𝑋 Ω) 𝑋

↠ i. This reduction

exists, so 1) and 2) are satisfied. For 3), we need to show that the selected set maximises the sup of

all the possible probabilities of all the possible reductions. Since Ω does not terminate, the possible

reductions to i are exactly those of weight either𝑋 or𝑋 𝑖+1𝑋
𝑗+1

, for some 𝑖, 𝑗 ∈ N such that𝑀
𝑋 𝑖𝑋

𝑗

↠ i.

It is clear then that, for any choice of 𝑝 ∈ [0, 1], the reduction corresponding to i ⊕𝑋 (𝑀 ⊕𝑋 Ω) 𝑋
↠ i

is the one with maximum weight.

Example 5.8. This example shows how the tropical degree is sensible to the number of parameters.

Let𝑀 : Bool, now with parameters 𝑋1, 𝑋1, 𝑋2, 𝑋2. Suppose that𝑀 ↠ i, for a fixed 𝑖 ∈ {0, 1}. Let us
show that 𝔡i (i⊕𝑋1

(𝑀 ⊕𝑋2
Ω)) ≥ 2. It is easy, arguing as before, to see that the tropical degree cannot

be 0. But now, contrarily to the above, we can also exclude it to be 1. In this case the reductions

to i are either that of weight 𝑋1, or those of weight 𝑋
𝑖1
1
𝑋

𝑗1+1
1

𝑋
𝑖2+1
2

𝑋
𝑗2
2
, for 𝑀

𝑋
𝑖
1

1
𝑋

𝑗
1

1
𝑋

𝑖
2

2
𝑋

𝑗
2

2

↠ i. Now,
while the only possible choice of a set 𝑆 of reductions of maximal degree 1, is the one of weight 𝑋1,
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this choice does not maximises all the possible probabilities, i.e. it does not satisfy 3). For example,

assigning𝑋1, 𝑋2 with, respectively, probabilities (𝑝1, 𝑝2) ∈ [0, 1]2 such that 𝑝1 < 1

2
and 𝑝2 > 2𝑝1 (for

example, 𝑝1 =
1

4
and 𝑝2 =

2

3
), one can see that a reduction i ⊕𝑋1

(𝑀 ⊕𝑋2
Ω) 𝑋1

↠ 𝑀 ⊕𝑋2
Ω

𝑋2

↠ 𝑀
𝑃 ′
↠ i,

with 𝑃 ′
large enough, might yield a probability (1 − 𝑝1)𝑝2𝑃 ′ > 𝑝1, thus violating 3).

Beyond these relatively simple cases, the general problem of finding the tropical degree of a

PCF⟨ ®𝑋 ⟩ program is not decidable (and indeed the proof of Corollary 5.5 is non-constructive).

Theorem 5.9. Both the problems of input a number 𝑑 ∈ N and a term𝑀 : Bool of PCF⟨𝑋1, . . . , 𝑋𝑘⟩
with 𝑘 ≥ 2, and of respective output “yes” if 𝔡i (𝑀) < 𝑑 and “no” otherwise, and “yes” if 𝔡i (𝑀) = 𝑑

and “no” otherwise, are not RE, and Π0

1
-hard

Proof. We reduce the complementary of the halting problem (which is not RE and is Π0

1
-

complete) to Problem 1 and to Problem 2. Given in input a closed𝑀 : Bool of PCF⟨X⟩, take 𝑋1 ≠ 𝑋2

(does not matter whether they belong toX or not) and let𝑀 := i⊕𝑋1
(𝑀 ⊕𝑋2

Ω). If𝑀 is normalisable

to i then, by arguing similarly to Example 5.8, we see that 𝔡i (𝑀) ≥ 2. If𝑀 is not normalisable to

i then, since Ω also is not normalisable to i, we have J𝑀Ki = 𝑋1 and so 𝔡i (𝑀) = 1. Summing up,

𝔡i (𝑀) = 1 iff𝑀 is not normalisable to i iff 𝔡i (𝑀) < 2. Hence an oracle semideciding either problem

1 or 2 allows to semidecide the non-normalisability of𝑀 . □

The previous examples show that computing (or even estimating) the tropical degree by hand is

a subtle task and, in general, exact values or even upper-estimations are not mechanisable. This

poses obvious limitations to the what can be achieved in general, algorithmically. However, in

the next Sections we will show that it is still possible to design an algorithm that progressively

computes estimations of the tropical degree eventually stabilizing onto the correct value 𝔡i (𝑀).

6 Convex Geometry and Newton Polytopes
As already mentioned, in this and the next section, by combining the toolbox of tropical geometry

with the one of programming language theory, we define an efficient procedure to solve the

inference problems (I1) and (I2) for a term𝑀 : Bool/N, that is, to compute the maximum a posteriori

(log)probabilities of producing a given value, say 1, and to produce a most likely explanation for it.

While the finiteness of the tropical degree ensures that we may restrict ourselves to explore only

a finite set of reductions 𝑆 , the size of 𝑆 may still be exponentially large (cf. Section 3.2).

In this section we show that one can compute some polynomially bounded subset 𝑆 ′ ⊂ 𝑆 that

still contains enough trajectories to track the most likely ones. This set 𝑆 ′ is obtained by associating
a program (in fact, its associated fps) with a polytope, called the minimal Newton polytope, which

is a variant of the well-known Newton polytope of a polynomial. The same method will then be

used to design an algorithm, similar to the Viterbi algorithm, to compute the tropical product of

polynomials in an efficient way. This algorithm will be the key ingredient, in the next section, to

design a compositional procedure to track the most likely trajectories of a PCF⟨ ®𝑋 ⟩-program.

6.1 The Newton Polytope
In this subsection we recall the standard definition of the Newton polytope of a polynomial. Let

us fix some all-one polynomial 𝑠 =
∑

𝜇 𝜇 ∈ R{Σ} in 𝑛 variables, where R := R ∪ {+∞}. This is the
standard tropical semiring in which tropical algebraic geometry is usually carried on. It is well-

known that the piece-wise linear function 𝑓𝑠 : R
𝑛 → R defined by 𝑠 by 𝑓𝑠 (𝑥) = min𝜇∈supp(𝑠 ) {𝜇 · 𝑥}

can be characterized via two, dual, geometric objects:

• the tropical variety 𝛾 (𝑓𝑠 ), i.e. the set of all tropical roots of 𝑠 , i.e. the 𝑥 ∈ R𝑛 such that the

minimum 𝑓𝑠 (𝑥) is reached by at least two monomials (i.e., 𝑓𝑠 is not differentiable at 𝑥 );
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•

•
•

•

•
•

(a) Geometric proof of the "old
freshman dream" (𝑋1+𝑋2+𝑋3)2 =
𝑋 2

1
+ 𝑋 2

2
+ 𝑋 2

3
. The triangle is

the convex hull of the points cor-
responding to the monomials in
(𝑋1 + 𝑋2 + 𝑋3)2. The triangle is
spanned by the three vertices cor-
responding to 𝑋 2

1
, 𝑋 2

2
, 𝑋 2

3
.

•
𝑂

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

(b) Illustration of 𝑁𝑃min (𝑠) ⊂
𝑁𝑃 (𝑠), for 𝑠 given in Example
6.7: 𝑁𝑃 (𝑠) is the convex hull of
𝑣1, . . . , 𝑣5. 𝑁𝑃min (𝑠), coloured in
grey, is the convex hull of the ver-
tices 𝑣1, . . . , 𝑣4. Notice that 𝑣5 ∉

𝑁𝑃min (𝑠), as it is not minimal
(e.g. 𝑣3 ≺ 𝑣5).

𝜎

•

•
•

•

(c) For the term 𝑀4 of Exam-
ple 6.10, both 𝑁𝑃min (𝑀4) and
𝑁𝑃 (𝑀4) are given by the segment
𝜎 . Its vertices (0, 3), (3, 0) contain,
by Proposition 6.5, the weights of
at least one most likely reduction
of𝑀4 (no matter how probabilities
are assigned to the parameter 𝑋 ).

Fig. 3. Illustrations of the Newton polytope.

• the Newton polytope 𝑁𝑃 (𝑠), i.e. the convex hull in R𝑛≥0 of the points 𝜇 ∈ N𝑛 in supp(𝑠).
𝛾 (𝑓𝑠 ) and 𝑁𝑃 (𝑠) describe two polyhedra in R𝑛 with dual graphs (see [36]), and any tropical

root 𝑎 ∈ 𝛾 (𝑓𝑠 ) of 𝑠 uniquely identifies a facet 𝐹𝑥 of 𝑁𝑃 (𝑠): 𝑎 individuates 𝑘 ≥ 2 monomials

𝜇1, . . . , 𝜇𝑘 ∈ N𝑛 such that 𝜇1 · 𝑎 = · · · = 𝜇𝑘 · 𝑎 =: 𝑏 ∈ R, so that 𝑎 is, by construction, normal to the

hyperplane 𝐻𝑎 of R
𝑛
of equation (in 𝑧) 𝑎 · 𝑧 = 𝑏 and 𝐻𝑎 is the supporting hyperplane of a unique

facet 𝐹𝑎 of 𝑁𝑃 (𝑠), namely the one containing the points 𝜇1, . . . , 𝜇𝑘 .

A crucial remark now is that, even if we defined 𝑁𝑃 (𝑠) as the convex hull of the possibly very

large set of points supp(𝑠), it is uniquely determined by the set Vert(𝑁𝑃 (𝑠)) ⊆ supp(𝑠) ⊆ 𝑁𝑃 (𝑠)
of its vertices which is, in general, much smaller and in average efficiently computable:

Theorem 6.1. Let 𝑠 ∈ R{𝑥1, . . . , 𝑥𝑛}. Then then #Vert(𝑁𝑃 (𝑠)) = O(𝑑2𝑛−1) ([45, 46]), where 𝑑 is

the degree of 𝑠 , and Vert(𝑁𝑃 (𝑠)) can be computed with a randomised algorithm in expected time

O(|𝑠 | ⌊ 𝑛2 ⌋) ([8, p. 256 (line 4 from the bottom)]), where |𝑠 | := #supp(𝑠).

A consequence of all this discussion is that, for a polynomial 𝑠 of degree 𝑑 , we can always find a

polynomial 𝑠′ formed by a subset (namely, Vert(𝑁𝑃 (𝑠))) of the monomials of 𝑠 of size polynomial

in 𝑑 such that 𝑁𝑃 (𝑠) = 𝑁𝑃 (𝑠′) and, crucially, the functions 𝑓𝑠 and 𝑓𝑠′ coincide. Indeed:

Lemma 6.2. Let 𝑠 =
∑

𝜇 𝜇 ∈ R{Σ}. Then min𝜇∈supp(𝑠 ) {𝜇 · 𝑥} = min𝜇∈Vert(𝑁𝑃 (𝑠 ) ) {𝜇 · 𝑥}.

Proof. This is an immediate consequence of a well-known fact in linear optimisation (cfr. [7]):

for a polytope 𝑃 , the inf on 𝑃 of a linear function 𝜇 · 𝑥 is found on the vertices of 𝑃 . □

Example 6.3. Consider the polynomial 𝑠 =
∑

𝑖+𝑗+𝑘=2𝑋
𝑖
1
𝑋

𝑗

2
𝑋𝑘
3
. Then 𝑁𝑃 (𝑠), illustrated in gray in

Fig. 3a, is the convex hull of all the points (𝑖, 𝑗, 𝑘) ∈ N3
such that 𝑖 + 𝑗 +𝑘 = 2. 𝑁𝑃 (𝑠) is generated by

its vertices, which are the three bold points (2, 0, 0), (0, 2, 0), (0, 0, 2) in the figure. We deduce that

𝑓𝑠 coincides with 𝑓𝑠′ , where 𝑠
′ = 𝑋 2

1
+ 𝑋 2

2
+ 𝑋 2

3
. What we have just described is in fact a geometric

proof of the "old freshman dream" (𝑥1 + 𝑥2 + 𝑥3)2 = 𝑥2
1
+ 𝑥2

2
+ 𝑥2

3
for tropical polynomial functions.

6.2 The Minimal Newton Polytope
We now address the following question, indeed a finitary variant of the problem discussed in

Section 5: given some very large, although finite, polynomial 𝑠 ∈ T{X}, can we find a sufficiently

smaller, and somehow minimal, all-one polynomial 𝑠′ such that t!𝑠 = (𝑠′)!?
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We have seen that the Newton polytope 𝑁𝑃 (𝑠) and its small number of vertices (Theorem 6.1)

precisely serves this purpose... but for the fact that 𝑁𝑃 (𝑠) characterizes the function R𝑛 → R
defined by tropical polynomials over the tropical semiring R∪ {+∞}, while we are interested in the

function t!𝑠 : T𝑛 → T defined by tropical polynomials 𝑠 over the tropical semiring T (with carrier

set [0, +∞]). To overcome this mismatch, we introduce the following:

Definition 6.4. The minimal Newton Polytope 𝑁𝑃min (𝑠) of 𝑠 =
∑

𝜇 𝑠𝜇𝜇 ∈ T{Σ} is the convex hull
in R𝑛≥0 of the following set, which is easily seen to be its set of vertices and non-empty:

Vert(𝑁𝑃min (𝑠)) := {𝜇 ∈ N𝑛 | 𝜇 minimal element of (Vert(𝑁𝑃 (𝑠)), ⪯)} ⊆ supp(𝑠),

where ⪯ is the pointwise (well-founded) order. We also set 𝑠min :=
∑

𝜇∈Vert(𝑁𝑃min (𝑠 ) ) 𝜇 ∈ T{Σ}.

The polytope 𝑁𝑃min (𝑠) precisely captures the behavior of the function t!𝑠 (𝑥) : T𝑛 → T: the
latter coincides with the min computed over the monomials in 𝑁𝑃min (𝑠):

Proposition 6.5. Let 𝑠 ∈ T{Σ}. Then min𝜇∈Vert(𝑁𝑃 (𝑠 ) ) {𝜇 · 𝑥} = min𝜇∈Vert(𝑁𝑃min (𝑠 ) ) {𝜇 · 𝑥}. In
particular, since the latter is t!𝑠min (𝑥), it follows from Lemma 6.2 that t!𝑠 (𝑥) = t!𝑠min (𝑥).

Proof. Fix 𝑥 ∈ R𝑛 . The (≤) is trivial. For (≥), we show, by induction on 𝜇 ∈ (Vert(𝑁𝑃 (𝑠)), ⪯),
that for all 𝜇 ∈ Vert(𝑁𝑃 (𝑠)), there is 𝜌 ∈ Vert(𝑁𝑃min (𝑠)) such that 𝜌 · 𝑥 ⪯ 𝜇 · 𝑥 . If 𝜇 is minimal,

then by definition 𝜇 ∈ Vert(𝑁𝑃min (𝑠)), so we are done. If 𝜇 is not, there is 𝜈 ∈ Vert(𝑁𝑃 (𝑠)) with
𝜈 ≺ 𝜇. By IH there is 𝜌 ∈ Vert(𝑁𝑃min (𝑠)) such that 𝜌 · 𝑥 ⪯ 𝜈 · 𝑥 ⪯ 𝜇 · 𝑥 , and we are done. □

The following shows that the set of vertices of NPmin (𝑠) can be computed fast wrt 𝑠 . Remembering

that |𝑠 | is the cardinality #(supp(𝑠)) of the support of 𝑠 , we have:

Theorem 6.6. Let 𝑠 ∈ T{Σ}. The set Vert(𝑁𝑃min (𝑠)) (i.e. 𝑠min) can be computed with a randomised

algorithm in expected time O(𝑛 |𝑠 |max{2,𝑛}).

Proof. First, compute Vert(𝑁𝑃 (𝑠)). For each 𝜇 ∈ Vert(𝑁𝑃 (𝑠)), the minimality check for 𝜇 can be

done in time 𝑛(#Vert(𝑁𝑃 (𝑠)) − 1) and, since we have #Vert(𝑁𝑃 (𝑠)) of them, we have an additional

time ∼ 𝑛 #Vert(𝑁𝑃 (𝑠))2. By Theorem 6.1, we can compute Vert(𝑁𝑃 (𝑠)) in expected time O(|𝑠 | ⌊ 𝑛2 ⌋).
Also #Vert(𝑁𝑃 (𝑠)) = O(|𝑠 |), whence the total time O(|𝑠 | ⌊ 𝑛2 ⌋) + 𝑛O(|𝑠 |2) = 𝑂 (𝑛 |𝑠 |max{2,𝑛}). □

Example 6.7. Let 𝑠 = 𝑋 2

1
𝑋 3

2
𝑋 2

3
+𝑋 3

1
𝑋 2

2
𝑋 2

3
+𝑋1𝑋2𝑋

3

3
+𝑋 3

1
𝑋 3

3
+𝑋 5

1
𝑋 3

2
𝑋 4

3
+𝑋 4

1
𝑋 2

2
𝑋 3

3
∈ T{{𝑋1, 𝑋2, 𝑋3}}.

Fig. 3b illustrates 𝑁𝑃 (𝑠), the convex hull of the points 𝑣1 = (2, 3, 2), 𝑣2 = (3, 2, 2), 𝑣3 = (1, 1, 3), 𝑣4 =
(3, 0, 3), 𝑣5 = (5, 3, 4), 𝑣6 = (4, 2, 3), of which only 𝑣1, . . . , 𝑣5 are vertices, as 𝑣6 is convex combination

of 𝑣4, 𝑣5. 𝑣5 is the only non minimal vertex, since e.g. 𝑣1 ≺ 𝑣5, so Vert(𝑁𝑃min (𝑠)) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}.

Remark 6.1. While the algorithm for 𝑁𝑃min (𝑠) in Theorem 6.6 rests on a brute force minimality

check on 𝑁𝑃 (𝑠) (still polynomial in 𝑑), a potential speed up may arise from geometric considerations.

In general, given a polytope 𝑃 in R𝑛 , any of its facets 𝑓 lies, by definition, on its supporting hyperplane

𝐻𝑓 , and moreover 𝑃 is all contained inside one of the two closed halfspaces 𝐻+
𝑓
, 𝐻−

𝑓
in which 𝐻𝑓 divides

R𝑛 . Call 𝐻+
𝑓
the one containing 𝑃 . Let us call 𝑓 negatively oriented if the normal unit vector to 𝐻𝑓

towards 𝐻−
𝑓
has all strictly negative coordinates (in the canonical base). Intuitively, 𝑓 “sees the origin”.

Now, it can be easily proven (see [7]) that a vertex 𝑣 belonging to some negatively oriented facet 𝑓 of 𝑃

is always minimal. The example in Fig. 3b illustrates this fact, since in this case 𝑁𝑃min (𝑠) coincides
with the unique negatively oriented facet of 𝑁𝑃 (𝑠). This suggests that, to compute the minimal vertices,

one could start by first selecting the negatively oriented facets, and restrict the brute force minimality

check to the remaining ones. However, the eventual speed up depends on the concrete representation of

a polytope in use in the algorithm, so we leave such investigations for future work.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.



Tropical Geometry of Probabilistic Programming Languages 33:19

It is worth to rephrase and summarise what we got so far: given a PCF⟨𝑋1, . . . , 𝑋𝑛⟩ term𝑀 : N and

some fixed outcome i, the parametric interpretation gives rise to a fps J𝑀KXi ∈ N∞{{X}}. If the latter
is a polynomial, then we have (cfr. Definition 6.4) a minimal polynomial (tJ𝑀KXi )min or, equivalently,

its Newton Polytope, call it 𝑁𝑃𝑖
min

(𝑀). By Proposition 6.5, this polytope approximates the tropical

degree 𝔡i (𝑀), in the sense that, for all probability assignment to the parameters of the program,

the vertices of 𝑁𝑃𝑖
min

(𝑀) (i.e. the minimal monomials in J𝑀KXi ) contain (the monomial of) at least

one most likely reduction. This reads as t!J𝑀KXi = (t!J𝑀KXi )min, whence 𝔡i (𝑀) ≤ deg((tJ𝑀KXi )min).
Figure 3c illustrates this discussion for the term𝑀4 from Example 6.10 (where the situation is more

trivial: 𝔡1 (𝑀4) = deg(J𝑀4KX1 ) = 3, because all reductions of𝑀4 have degree 3).

But we can actually do the same even if the fps J𝑀KXi is not a polynomial (i.e. its support is

infinite): by arguing similarly to Proposition 5.4, one sees that the minimal monomials in its support

are still in finite number, therefore one still has a polynomial (tJ𝑀KXi )min or, equivalently, its Newton

Polytope, call it 𝑁𝑃𝑖
min

(𝑀). Moreover, one can follow the same proof of Proposition 6.5 in order to

show that 𝑁𝑃𝑖
min

(𝑀) still satisfies the exact same approximation property as in the finite case.

In conclusion, we can always associate𝑀 : N with a minimal Polytope 𝑁𝑃𝑖
min

(𝑀), i.e. a minimal

all-one polynomial (tJ𝑀KXi )min ∈ T{X} with t!J𝑀KXi = (t!J𝑀KXi )min and 𝔡i (𝑀) ≤ deg((tJ𝑀KXi )min).
Notice that this is not in contradiction with Theorem 5.9: the above upper-bound always holds,

but in general we can only hope to compute all the minimal monomials for finite interpretations.

6.3 The Viterbi-Newton Algorithm
Recall that, from the discussion around (6) in Section 3, tracking themost likely runs of an application

𝑀𝑁 requires to be able to compute (tropical) products of polynomials efficiently. We will now use

the results from the previous subsection to define an algorithm VN to compute, given 𝑘 polynomials

𝑠1, . . . , 𝑠𝑘 , a minimal polynomial 𝑠 capturing the tropical product of the 𝑠𝑖 .

First observe that the number of monomials in 𝑠1 . . . 𝑠𝑘 grows exponentially in 𝑘 . For instance,

letting all 𝑠𝑖 be the same polynomial 𝑋1 + · · · +𝑋𝑛 , we have that 𝑠1 . . . 𝑠𝑘 = (𝑋1 + · · · +𝑋𝑛)𝑘 contains(
𝑛+𝑘−1
𝑘−1

)
∈ O((𝑛 +𝑘 −1)𝑘−1) distinct monomials. However, we have seen (cf. Example 6.3) that in the

tropical setting we have (𝑋1 + · · · + 𝑋𝑛)𝑘 = 𝑋𝑘
1
+ · · · + 𝑋𝑘

𝑛 . Indeed, as we show below, a sufficiently

small set of monomials is enough to capture the polynomial function t! (∏𝑘
𝑖=1 𝑠𝑖 ).

The main idea behind the algorithm described below is to compute the product as an operation

performed directly over the minimal Newton polytopes 𝑁𝑃min (𝑠1), . . . , 𝑁𝑃min (𝑠𝑛), and producing

the minimal polytope 𝑁𝑃min (𝑠1 . . . 𝑠𝑛) (this is reminiscent of the polytope algebra of [42]). The

fundamental remark is that the product of polynomes translates into the Minkowski sum of the

corresponding polytopes, defined as 𝐴 + 𝐵 = {𝑣 +𝑤 | 𝑣 ∈ 𝐴,𝑤 ∈ 𝐵} for two sets in R𝑛 . The set
Vert(𝐴 + 𝐵) can be computed in time O(𝑛𝑚), where 𝑛 = |Vert(𝐴) |,𝑚 = |Vert(𝐵) |, cf. [16]. Using
the well-known fact that 𝑁𝑃 (𝑠1𝑠2) = 𝑁𝑃 (𝑠1) + 𝑁𝑃 (𝑠2), we can prove:

Lemma 6.8. Let 𝑠1, 𝑠2 ∈ T{{Σ}}. Vert(𝑁𝑃min (𝑠1𝑠2)) = (Vert(𝑁𝑃min (𝑠1)) + Vert(𝑁𝑃min (𝑠2)))min.

We now show the existence an algorithm (which we call VN – for “Viterbi+Newton”) to compute

the minimal polynomial (∏𝑘
𝑖=1 𝑠𝑖 )min efficiently from (𝑠1)min, . . . , (𝑠𝑘 )min.

Theorem 6.9. Let 𝑘 ≥ 2, 𝑠1, . . . , 𝑠𝑘 ∈ T{{Σ}} be minimal (i.e. such that 𝑠𝑖 = (𝑠𝑖 )min), let 𝑑 :=

max𝑖 deg(𝑠𝑖 ) and 𝑛 := #Σ. There is an algorithm VN(𝑠1, . . . , 𝑠𝑘 ) computing (∏𝑘
𝑖=1 𝑠𝑖 )min in (expected)

time O(𝑛𝑑𝑘 (2𝑛−1) max{2,𝑛}) (when 𝑛 ≤ 𝑘), and (deterministic) time O((1 + 𝑘)𝑑𝑘 (2𝑛−1) ) (when 𝑛 > 𝑘).

Moreover, (∏𝑘
𝑖=1 𝑠𝑖 )min has O((𝑘𝑑)2𝑛−1) monomials.

Proof. We could directly compute the product Π𝑘
𝑖=1𝑠𝑖 (in time O(𝑑𝑘 (2𝑛−1) ), since Theorem 6.1

gives |𝑠𝑖 | = O(𝑑2𝑛−1)) and then extract its minimal Newton polytope, which gives, via Theorem
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6.6, the first bound. When 𝑛 > 𝑘 , a speed-up is obtained by using Lemma 6.8: since 𝑠𝑖 = (𝑠𝑖 )min,

𝑁𝑃 (𝑠𝑖 ) = 𝑁𝑃min (𝑠𝑖 ) and the vertices of 𝑁𝑃 (𝑠𝑖 ) are precisely the terms of 𝑠𝑖 , so we can compute

in time O(𝑑𝑘 (2𝑛−1) ) the Minkowski sum 𝑁𝑃 (∏𝑖 𝑠𝑖 ) =
∑

𝑖 𝑁𝑃 (𝑠𝑖 ) (which, again by Theorem 6.1,

has O((𝑘𝑑)2𝑛−1) terms) and then do a quadratic minimization. This gives the (deterministic) time

O(𝑑𝑘 (2𝑛−1) + (𝑘𝑑)2(2𝑛−1) ), leading to the claimed bound. □

Remark that t! (∏𝑘
𝑖=1 𝑠𝑖 )min (𝑥) =

∑𝑘
𝑖=1 (𝑠𝑖 )min (𝑥). By computing products via VN, once we fix the

number of variables, the size of (tropical) products like (6) grows polynomially in both 𝑑 and 𝑘 .

Example 6.10. Consider 𝑀5 = (𝜆𝑥.𝑥 ⊕𝑋 𝑥) (𝜆𝑥.𝑥 ⊕𝑋 𝑥) . . . (𝜆𝑥.𝑥 ⊕𝑋 𝑥)1 similar to 𝑀4 from

Section 3.2. Each of the 2
𝑛
trajectories 𝑀

𝜇
↠ 1 corresponds to a monomial 𝑋 𝑖𝑋

𝑛−𝑖
and the sum

of all such monomials produces the polynomial (with the same support as) (𝑋 + 𝑋 )𝑛 . Observe

that, since all reductions to i have degree 𝑛, the tropical degree 𝔡i (𝑀4) = 𝑛, and we can select all

the 2
𝑛
reductions to witness this fact. But this tells nothing wrt the most likely reductions. By

contrast, by the old freshman dream (Example 6.3), the Newton polytope of (𝑋 + 𝑋 )𝑛 only selects

the two monomials 𝑋𝑛, 𝑋
𝑛
. One can see that, for all assignment of 𝑋 to probability 𝑝 ∈ [0, 1],

the probability of the most likely reductions is always found within the two selected ones (i.e.,

max
𝑛
𝑖=0 𝑝

𝑖 (1 − 𝑝)𝑛−𝑖 = max{𝑝𝑛, (1 − 𝑝)𝑛}, as one can easily check). In other words, the Newton

Polytope (in fact, its minimal version) of (the parametric interpretation of)𝑀4, drastically reduces

the search space for most likely reductions.

7 Tropical Intersection Type System
We now put all the work of the previous section in use for the analysis of probabilistic programs

of PCF⟨ ®𝑋 ⟩: we introduce an intersection type system Ptrop that associates terms of PCF⟨ ®𝑋 ⟩ with
minimal all-one polynomials describing their most-likely reductions. After proving soundness and

completeness of Ptrop wrt the parametric WRS semantics, we describe an algorithm that converges

onto the Newton polynomial, thus producing an answer to the inference tasks (I1) and (I2).

7.1 The Type System Ptrop
Intersection type system have been largely used to capture the termination properties of higher-

order programs. Non-idempotent (n. i.) intersection type systems, inspired from linear logic, have

been shown to capture quantitative properties like e.g. the number of reduction steps [1, 11, 18]. In

a probabilistic setting, [22] have introduced a n. i. intersection type system P for probabilistic PCF

which precisely captures the probability that a program𝑀 : Bool reduces to, say, 1 in the following

sense: for each reduction𝑀
𝑝
→ 1 one can construct a derivation of the form ⊢𝑝P 𝑀 : 1 so that

P
(
𝑀 ↠ 1

)
=
∑︁{

𝑤 (𝜋)
�� 𝜋 is a derivation of ⊢𝑝P 𝑀 : 1 of weight𝑤 (𝜋) = 𝑝

}
. (10)

By replacing the positive real weights 𝑝 ∈ [0, 1] in the system P with the formal monomials of

PCF⟨ ®𝑋 ⟩ one obtains, in a straightforward way, a type system that produces all the monomials 𝜇

occurring in a reduction𝑀
𝜇
↠ 1. In other words, the type system explores all possible reductions of

𝑀 and produces the associated monomial. This provides a way to fully reconstruct the parametric

interpretation J𝑀K𝑋1,...,𝑋𝑛 ∈ N∞{{X}} of a term.

Our goal, instead, is to design a type system that explores multiple reductions at once, excluding

those whose probability is dominated, so as to restrict to a finite set of most likely reductions.

The goal is thus to capture a finite polynomial corresponding to the tropicalization t!J𝑀K𝑋1,...,𝑋𝑛

(in accordance with Theorem 5.5). A natural idea is to consider multiple P-derivations in parallel.

Typically, while in the case of a choice𝑀 ⊕𝑝 𝑁 a derivation in P chooses whether to look at𝑀 or
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𝑁 (that is, it chooses between the two reducts of𝑀 ⊕𝑝 𝑁 ), in our system the derivation branches

so as to consider (and compare) both possible choices.

However, the feasibility of such a system is far from obvious: through reduction, even a term of

small size may give rise to an exponentially large number of trajectories, as shown in the example

below. Keeping track of all such trajectories through parallel branches in our type derivations can

quickly become intractable (even for a computer-assisted formalization).

As already explained, this is where we exploit the minimal Newton polytope: while the rules of P
produce the probability by progressively multiplying the monomials obtained at each previous step,

considering multiple P-derivations at once requires computing formal polynomials by repeatedly

multiplying other formal polynomials produced at previous steps. By using the results developed

in Section 6, we are able to keep the size of such polynomials under control.

Definition 7.1 (Ptrop). The types of Ptrop are defined by the grammar 𝑎 := 𝑛 ∈ N | [𝑎, . . . 𝑎] ⊸ 𝑎.

A context 𝛾 is a function from variables to multisets of Ptrop-types, all empty except finitely many.

We write it as a finite sequence of variable declarations 𝑥 : 𝛾 (𝑥) such that 𝛾 (𝑦) = [] for all non-
declared 𝑦. Given contexts 𝛾, 𝛿 , we indicate as 𝛾 + 𝛿 the context obtained by summing their image

variable-wise. A pre-judgement is an expression of the form

𝑀 :

〈
𝛾 𝑗 ⊢𝑠 𝑗 𝑎 𝑗

〉
𝑗∈ 𝐽

and stands for a finite family of judgements 𝛾 𝑗 ⊢𝑠 𝑗 𝑀 : 𝑎 𝑗 , where 𝑠 𝑗 indicates a formal polynomial

in T{X}. A pre-judgement is a judgement when the pairs (𝛾 𝑗 , 𝑎 𝑗 ) 𝑗∈ 𝐽 are pairwise distinct and the

polynomials 𝑠 𝑗 are minimal. Given a pre-judgement as above, we can always produce a judgement

𝑀 : merge

〈
𝛾 𝑗 ⊢𝑠 𝑗 𝑎 𝑗

〉
𝑗∈ 𝐽 by merging equal typings (e.g. turning ⟨𝛾 ⊢𝑠 𝑎 | 𝛾 ⊢𝑠′ 𝑎⟩ into ⟨𝛾 ⊢𝑠+𝑠′ 𝑎⟩)

and minimizing each obtained polynomial 𝑠 via VN(𝑠). The rules of Ptrop are illustrated in Fig. 4.

Crucially, we design the rules so as to precisely keep track of the reductions selected by the

minimal Newton Polytope of a compound term, by combining those of its constituent.

Except for the rule (∅), that introduces an empty family of judgements, each rule of Ptrop results
from a corresponding rule of P by extending it to families of judgements. The rules (n), (id), (S), (P),

(𝜆) are self-explanatory: they correspond to rules that create no new parametric reduction. The

rules (ifz), (⊕), (@) and (Y) deserve some discussion. The rule (⊕) collects a family of typings of

𝑀 with polynomials 𝑠𝑖 , and a family of typings of 𝑁 with polynomials 𝑠′𝑗 , to produce a family of

typings of𝑀 ⊕𝑋 𝑁 , with polynomials 𝑠𝑖 ·𝑋 and 𝑠′𝑗 ·𝑋 , that is successively merged. Observe that this

precisely corresponds to keeping track of the reductions selected by the minimal Newton Polytope

of𝑀 ⊕𝑋 𝑁 , by combining those of𝑀 and 𝑁 . The rule (ifz) works in a similar way, but uses VN(−)
also before merging, since it needs to compute the possibly non-trivial tropical products 𝑠0 · 𝑡 𝑗
and 𝑠𝑖+1 · 𝑡 ′𝑗 . The application rule (@) collects, on the one hand, a family of typing𝑚𝑖 ⊸ 𝑏𝑖 of𝑀

with polynomials 𝑠𝑖 , where𝑚𝑖 = [𝑚𝑖1, . . . ,𝑚𝑖𝑝𝑖 ]; on the other hand, for each typing𝑚𝑖 ⊸ 𝑏𝑖 , and

each type𝑚𝑖 𝑗 inside𝑚𝑖 , it collects a typing 𝑁 : 𝑚𝑖 𝑗 with polynomials 𝑠′𝑖 𝑗 . The conclusion of the

rule computes minimal polynomials for the types 𝑏𝑖 by calling VN(𝑠𝑖 , 𝑠′𝑖1, . . . , 𝑠′𝑖𝑝𝑖 ) to minimise the

tropical multiplication 𝑠𝑖 ·
∏

𝑗 𝑠
′
𝑖 𝑗 . The rule (Y) works in a very similar way.

Example 7.2. In Fig. 5 we illustrate a family 𝜋𝑛 of derivations for the term 𝑀3 from Section 2.

𝑀3 admits arbitrary long reductions, the first one being the most likely. 𝜋0 computes the weight

of the most likely derivation 𝑀3

𝑋
↠ 1; 𝜋𝑛+1 compares the weights from all 𝜋𝑖 , for 𝑖 ≤ 𝑛 with the

weight of the 𝑛 + 1th reduction, but ends up selecting in each case only the weight from 𝜋0, since

(∑𝑛 𝑋𝑋
𝑛)min = 𝑋 . Hence, all 𝜋𝑛 correctly compute the minimal polynomial, providing a correct

estimation of the tropical degree 𝔡1 (𝑀3) = 1 of𝑀3.
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∅
𝑀 : ∅

id

𝑥 :

〈
𝑥 : [𝑎𝑖 ] ⊢1 𝑎𝑖

〉
𝑖∈𝐼

n

n :

〈
⊢1 𝑛

〉
{★}

𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑛𝑖

〉
𝑖∈𝐼

S

succ𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑛𝑖 + 1

〉
𝑖∈𝐼

𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑛𝑖

〉
𝑖∈𝐼

P

pred𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑛𝑖 ·− 1

〉
𝑖∈𝐼

𝑀 :

〈
𝛾0 ⊢𝑠0 0

��� 𝛾𝑖+1 ⊢𝑠𝑖+1 𝑖 + 1

〉
𝑖∈𝐼⊂N

𝑁 :

〈
𝛿 𝑗 ⊢𝑡 𝑗 𝑎 𝑗

〉
𝑗∈ 𝐽0

𝑃 :

〈
𝛿 ′𝑗 ⊢𝑡

′
𝑗 𝑎′𝑗

〉
𝑗∈ 𝐽1

ifz

ifz(𝑀, 𝑁, 𝑃) : merge

〈
𝛾0 + 𝛿 𝑗 ⊢VN(𝑠0 , 𝑡 𝑗 ) 𝑎 𝑗

��� 𝛾𝑖+1 + 𝛿 ′𝑗 ⊢VN(𝑠𝑖+1 , 𝑡 ′ 𝑗 ) 𝑎′𝑗

〉
𝑖∈𝐼 , 𝑗∈ 𝐽0+𝐽1

𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑎𝑖

〉
𝑖∈𝐼

𝑁 :

〈
𝛾 𝑗 ⊢𝑠

′
𝑗 𝑎 𝑗

〉
𝑗∈ 𝐽 ⊕

𝑀 ⊕𝑋 𝑁 : merge

〈
𝛾𝑖 ⊢𝑠𝑖 ·𝑋 𝑎𝑖

���𝛾 𝑗 ⊢𝑠′𝑗 ·𝑋 𝑎 𝑗

〉
𝑖∈𝐼 , 𝑗∈ 𝐽

𝑀 :

〈
𝛾𝑖 , 𝑥 :𝑚𝑖 ⊢𝑠𝑖 𝑏𝑖

〉
𝑖∈𝐼

𝜆
𝜆𝑥 .𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑚𝑖 ⊸ 𝑏𝑖

〉
𝑖∈𝐼

𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑚𝑖 ⊸ 𝑏𝑖

〉
𝑖∈𝐼

𝑁 :

〈〈
𝛿𝑖 𝑗 ⊢𝑠

′
𝑖 𝑗 𝑚𝑖 𝑗

〉
𝑗∈ 𝐽𝑖

〉
𝑖∈𝐼

@

𝑀𝑁 : merge

〈
𝛾𝑖 +

∑
𝑗 𝛿𝑖 𝑗 ⊢

VN(𝑠𝑖 , 𝑠′𝑖1,...,𝑠′𝑖𝑝𝑖 ) 𝑏𝑖
〉
𝑖∈𝐼

𝑀 :

〈
𝛾𝑖 ⊢𝑠𝑖 𝑚𝑖 ⊸ 𝑏𝑖

〉
𝑖∈𝐼

Y𝑀 :

〈〈
𝛿𝑖 𝑗 ⊢𝑠

′
𝑖 𝑗 𝑚𝑖 𝑗

〉
𝑗∈ 𝐽𝑖

〉
𝑖∈𝐼

Y

Y𝑀 : merge

〈
𝛾𝑖 +

∑
𝑗 𝛿𝑖 𝑗 ⊢

VN(𝑠𝑖 , 𝑠′𝑖1,...,𝑠′𝑖𝑝𝑖 ) 𝑏𝑖
〉
𝑖∈𝐼

Fig. 4. Typing Rules of Ptrop. In rules@ and Y,𝑚𝑖 = [𝑚𝑖1, . . . ,𝑚𝑖𝑝𝑖 ] and 𝑝𝑖 = Card(𝐽𝑖 ).

Example 7.3. In Fig. 6 we illustrate a derivation for the term𝑀4 from Section 3.2, choosing 𝑛 = 2

and 𝑋1 = 𝑋2. It computes the reduced polynomial 𝑋 3 + 𝑋
3

, thus correctly estimating 𝔡1 (𝑀4) = 3.

The number of families explored in parallel in a derivation is a parameter controlled by the

user. For example, in a term𝑀 ⊕𝑋 𝑁 we can decide whether to explore both branches or only one,

and this choice affects the size of the derivation |𝜋 |, that is, the number of rules. Instead, the size

of the polynomials obtained through the derivation is not controlled by the user. Thanks to the

estimation from Theorem 6.9, though, their size remains polynomial in |𝜋 |. Indeed, the following
can be proved by induction on 𝜋 :

Proposition 7.4. Let 𝜋 be a derivation of 𝑀 : ⟨Γ𝑖 ⊢𝑠𝑖 𝑎𝑖⟩𝑖∈𝐼 . Then max𝑖 {deg 𝑠𝑖 } = 𝑂 ( |𝜋 |). As a
consequence, |𝑠𝑖 | ∈ O(|𝜋 |2𝑛−1) for all 𝑖 ∈ 𝐼 .

Given a derivation 𝜋 of 𝑀 : ⟨⊢𝑠 i⟩, by replacing, in each rule (ifz), (@) and (Y), the minimized

products (Π𝑖𝑠𝑖 )min obtained by VN(𝑠1, . . . , 𝑠𝑛) with the full products Π𝑖𝑠𝑖 , we obtain in the end a

larger polynomial, that we call traj
𝑖 (𝜋). Using Lemma 6.8 one can easily check that:

Proposition 7.5. For any derivation 𝜋 of𝑀 : ⟨⊢𝑠 i⟩, 𝑠 = (traji (𝜋))min.

Intuitively, the polynomial traj
i (𝜋) tracks all reductions of𝑀 that 𝜋 explored and out of which

it selected the most likely ones. This claim will be justified by the soundness theorem below. For

instance, consider Example 7.3, if we replace, in the derivation of Fig. 6, products computed by VN
by standard products, we obtain traj

1 (𝜋) = ∑
𝑖+𝑗=3𝑋

𝑖𝑋
𝑗
, while 𝑋 3 + 𝑋

3

= (traj1 (𝜋))min.

7.2 Soundness and Completeness of Ptrop for the Parametric WRS
Intuitively, a Ptrop-derivation is an optimized way to collect multiple P-derivations, which, in
turn, encode the reductions of the underlying term. More precisely, for any choice of probabilities

𝑝 ∈ [0, 1]X, for any derivation of 𝑀 : ⟨Γ𝑖 ⊢𝑠𝑖 𝑎𝑖⟩𝑖∈𝐼 , for each 𝑖 ∈ 𝐼 and for each monomial 𝜇 in 𝑠𝑖 ,

there is a derivation of Γ𝑖 ⊢𝑝
𝜇

𝑀 [𝑋 := 𝑝] : 𝑎𝑖 in P, where 𝑝𝜇 = Π𝑉 ∈X𝑝
𝜇 (𝑉 )
𝑉

(cfr. Section 4.1) is the

probability of the reduction of𝑀 [𝑋 := 𝑝] (to some normal form) corresponding to 𝜇. This suggests

then that soundness and completeness can be lifted from P [22, Lemma 20 and Equation 11] to Ptrop.
The fundamental ingredient is the notion of a Ptrop-derivation refining a PCF⟨ ®𝑋 ⟩-derivation.

First, given a simple type 𝐴, a Ptrop-type 𝑎, a simple context Γ and a Ptrop-context 𝛾 , we say that

(𝛾, 𝑎) refines (Γ, 𝐴) whenever 𝑎 ∈ J𝐴K (so e.g. 0, 1 refine Bool and𝑚 ⊸ 𝑏 refines 𝐴 → 𝐵 whenever
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𝜋0 :

𝑥 : ∅ 1 :
〈
⊢1 1

〉
𝑥 ⊕𝑋 1 :

〈
⊢𝑋 1

〉
𝜆𝑥 .𝑥 ⊕𝑋 1 :

〈
⊢𝑋 ∅ ⊸ 1

〉
Y(𝜆𝑥.𝑥 ⊕𝑋 1) :

〈
⊢𝑋 1

〉
𝜋𝑛+1 :

1 :
〈
⊢1 1

〉
𝑥 :

〈
𝑥 : [1] ⊢1 1

〉
𝑥 ⊕𝑋 1 :

〈
⊢𝑋 1

���𝑥 : [1] ⊢𝑋 1

〉
𝜆𝑥 .𝑥 ⊕𝑋 𝑇 :

〈
⊢𝑋 ∅ ⊸ 1

��� ⊢𝑋 [1] ⊸ 1

〉 ∅
���𝜋𝑛

Y(𝜆𝑥 .𝑥 ⊕𝑋 1) :
〈
∅
��� ⊢𝑋 1

〉
Y(𝜆𝑥.𝑥 ⊕𝑋 1) :

〈
⊢𝑋 1

〉
Fig. 5. Derivations from Example 7.2.

𝑥 :

〈
𝑥 : [[𝑎] ⊸ 𝑎] ⊢1 [𝑎] ⊸ 𝑎

〉
𝑥 :

〈
𝑥 : [[𝑎] ⊸ 𝑎] ⊢1 [𝑎] ⊸ 𝑎

〉
𝑥 ⊕𝑋 𝑥 :

〈
𝑥 : [[𝑎] ⊸ 𝑎] ⊢𝑋+𝑋 [𝑎] ⊸ 𝑎

〉
𝜆𝑥.𝑥 ⊕𝑋 𝑥 :

〈
⊢𝑋+𝑋 [[𝑎] ⊸ 𝑎] ⊸ [𝑎] ⊸ 𝑎

〉
𝑥 :

〈
𝑥 : [[1] ⊸ 1] ⊢1 [1] ⊸ 1

〉
𝑥 :

〈
𝑥 : [[1] ⊸ 1] ⊢1 [1] ⊸ 1

〉
𝑥 ⊕𝑋 𝑥 :

〈
𝑥 : [[1] ⊸ 1] ⊢𝑋+𝑋 [1] ⊸ 1

〉
𝜆𝑥.𝑥 ⊕𝑋 𝑥 :

〈
⊢𝑋+𝑋 [[1] ⊸ 1] ⊸ [1] ⊸ 1

〉
(𝜆𝑥.𝑥 ⊕𝑋 𝑥)𝜆𝑥 .𝑥 ⊕𝑋 𝑥 :

〈
⊢𝑋 2+𝑋 2

[1] ⊸ 1

〉
𝑥 :

〈
𝑥 : [1] ⊢1 1

〉
𝑥 :

〈
𝑥 : [1] ⊢1 1

〉
𝑥 ⊕𝑋 𝑥 :

〈
𝑥 : [1] ⊢𝑋+𝑋

1

〉
𝜆𝑥.𝑥 ⊕𝑋 𝑥 :

〈
⊢𝑋+𝑋 [1] ⊸ 1

〉
(𝜆𝑥 .𝑥 ⊕𝑋 𝑥) (𝜆𝑥 .𝑥 ⊕𝑋 𝑥)𝜆𝑥.𝑥 ⊕𝑋 𝑥 :

〈
⊢𝑋 3+𝑋 3

[1] ⊸ 1

〉
1 :

〈
⊢1 1

〉
(𝜆𝑥.𝑥 ⊕𝑋 𝑥) (𝜆𝑥.𝑥 ⊕𝑋 𝑥) (𝜆𝑥 .𝑥 ⊕𝑋 𝑥)1 :

〈
⊢𝑋 3+𝑋 3

1

〉

Fig. 6. Derivation from Example 7.3, where 𝑎 = [1] ⊸ 1.

𝑚 ∈ !J𝐴K and 𝑏 ∈ J𝐵K) and 𝛾 (𝑥) ∈!JΓ(𝑥)K for all 𝑥 declared in Γ, and 𝛾 (𝑥) = [] otherwise. Now,
given a PCF⟨ ®𝑋 ⟩-derivation Π of Γ ⊢ 𝑀 : 𝐴 and a Ptrop-derivation 𝜋 of 𝑀 :

〈
𝛾𝑘 ⊢𝑠𝑘 𝑎𝑘

〉
𝑘
with

(𝛾, 𝑎) refining (Γ, 𝐴), 𝜋 refines Π when, intuitively, its rules match the corresponding rules in Π:
for instance, if Π ends with the abstraction rule of conclusion Γ ⊢ 𝑀 : 𝐴 → 𝐵, 𝜋 ends with the

rule (𝜆) of conclusion 𝑀 : ⟨𝛾𝑖 ⊢ 𝑀 : 𝑚𝑖 ⊸ 𝑏𝑖⟩𝑖∈𝐼 , where (𝛾𝑖 ,𝑚𝑖 ⊸ 𝑏𝑖 ) refines (Γ, 𝐴 → 𝐵). Two
exceptions are the cast rule (which is skipped) and the Y-rule. For the latter, the intuition is that a

Ptrop-derivation 𝜋 for Y𝑀 actually determines one possible finite unfolding of Y𝑀 . More precisely, 𝜋

must end with a cluster of ℎ consecutive Y-rules of which the last one has premise of type [] ⊸ 𝑏 𝑗 .

By replacing each such (Y) with (@) one obtains then a Ptrop-derivation unfold(𝜋) in which Y𝑀

has been replaced by the unfolded term𝑀 (ℎ)𝑦 (𝑦 is a fresh variable). Correspondingly, Π can also

be transformed into a PCF⟨ ®𝑋 ⟩-derivation unfoldℎ (Π) of𝑀 (ℎ)𝑦 by replacing the fixpoint rule with

a cluster of ℎ application rules; we say that 𝜋 refines Π when unfold(𝜋) refines unfoldℎ (Π). For
the definition to make sense, a transfinite induction is required, by treating the Y-rule as a 𝜔-rule.

By adapting the argument for P [22, Lemma 20], we obtain (by induction on a PCF⟨ ®𝑋 ⟩-derivation):

Theorem 7.6 (Soundness of Ptrop wrt WRS). Let Π a PCF⟨ ®𝑋 ⟩-derivation of Γ ⊢ 𝑀 : 𝐴 and (𝛾, 𝑎)
refining (Γ, 𝐴). For all Ptrop-derivation 𝜋 of𝑀 : ⟨𝛾 ⊢𝑠 𝑎⟩ that refines Π, supp(𝑠) ⊆ supp(J𝑀KX𝛾,𝑎).

It follows that, in particular, the minimal polynomials produced by typing derivations for a closed

ground-type term𝑀 produce an over-approximation of the tropicalisation of𝑀 :

Corollary 7.7. Let Π derive in PCF⟨ ®𝑋 ⟩⊢ 𝑀 : N, 𝑛 ∈ N. For all 𝜋 derivation in Ptrop of𝑀 : ⟨⊢𝑠 𝑛⟩
that refines Π, we have t!J𝑀Kn (𝑞) ≤ 𝑠 ! (𝑞) for all 𝑞 ∈ T2𝑛 (𝑛 being the number of parameters).

Proof. It follows from taking Γ = ∅, 𝐴 = N in the soundness, which gives: for all 𝑛 ∈ N and

𝑞 ∈ T2𝑛 , t!J𝑀KXn (𝑞) ≤ inf{𝜇 · 𝑞 | 𝜇 ∈ supp(𝑠) for some 𝜋 of𝑀 : ⟨⊢𝑠 𝑛⟩}. □

In fact, we can saymore: Ptrop captures at least theminimal part of the parametricWRS. Reasoning

in a similar way as for Theorem 7.6, one can show:

Theorem 7.8 (Completeness of Ptrop wrt minimal WRS). Let Π be a PCF⟨ ®𝑋 ⟩-derivation of

Γ ⊢ 𝑀 : 𝐴 and (𝛾, 𝑎) refining (Γ, 𝐴). For all 𝜇 ∈ supp(J𝑀KX𝛾,𝑎)min there is a Ptrop-derivation 𝜋 of

𝑀 : ⟨𝛾 ⊢𝑠 𝑎⟩ that refines Π and with 𝜇 ∈ supp(𝑠).
Notice that, together, Theorems 7.6 and 7.8 give the equality

t!J𝑀Kn (𝑞) = inf{𝜇 · 𝑞 | 𝜇 ∈ supp(𝑠) for some 𝜋 of𝑀 : ⟨⊢𝑠 𝑛⟩}, (11)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.



33:24 Davide Barbarossa and Paolo Pistone

𝑆0

𝑆1
0

𝑆1
1

𝑆2
0

𝑆2
1

𝑆𝑛
0

𝑆𝑛
1

. . .

(a) Bayesian Network.

𝜋 𝑗

𝑃 𝑗 : ⟨⊢𝑠
𝑗

0 0 | ⊢𝑠
𝑗

1 1⟩

𝜋𝑆,𝑗+1,0

𝑆
𝑗+1
0

: ⟨⊢𝑢
𝑗+1
0 0 | ⊢𝑢

𝑗+1
1 1⟩

𝜋𝑆,𝑗+1,1

𝑆
𝑗+1
1

: ⟨⊢𝑣
𝑗+1
0 0 | ⊢𝑣

𝑗+1
1 1⟩

ifz
𝑃 𝑗+1 :

〈
⊢VN(𝑠 𝑗

0
·𝑢 𝑗+1

0
+𝑠 𝑗

1
·𝑣 𝑗+1
0

) 0
�� ⊢VN(𝑠 𝑗

0
·𝑢 𝑗+1

1
+𝑠 𝑗

1
·𝑣 𝑗+1
1

) 1
〉

(b) Typing derivation 𝜋 𝑗+1 for 𝑃 𝑗+1.

Fig. 7. Bayesian Network and typing derivation for Example 7.9.

showing that the taf interpreting𝑀 can be in principle approximated via larger and larger deriva-

tions, which we construct below. Actually, coherently with Corollary 5.5, we show in Theorem 7.11

that there is a single derivation reaching the inf, which is thus a (non computable, in general) min.

7.3 Constructing a Solution to Tasks (I1) and (I2)
We now exploit the type system Ptrop to design an algorithm that, by reconstructing the Newton

polynomial of a term, converges onto a correct solution to the inference tasks (I1) and (I2). Given

a PCF⟨ ®𝑋 ⟩-term 𝑀 : Bool with parameters ®𝑋 and a chosen output value 𝑖 ∈ {0, 1}, the goal is

to produce in output a finite set selected_trajs𝑖 (𝑀) of tuples (𝜇,𝑤𝜇, 𝑆), where 𝑤𝜇 ∈ {0, 1}∗ is
a sequence describing a candidate most likely trajectory 𝑀

𝜇
↠ i and 𝑆 ⊆ [0, +∞]𝑛 is the set of

(− log)-values of the parameters ®𝑋 that make 𝜇 minimum across all 𝜇 ∈ selected_trajs𝑖 (𝑀). The
algorithm is divided in two phases: the construction of a suitable Ptrop-derivation of𝑀 : ⟨⊢𝑠 i⟩, and
the extraction of the set selected_trajs𝑖 (𝑀) from 𝜋 , described in the following two subsections.

7.3.1 Constructing a Stable Derivation. The main idea for the construction of a derivation exploring

the reductions of𝑀 was already suggested in Example 7.2: we progressively make 𝜋 grow so as to

exploremore and more reductions, until the produced polynomial 𝑠 stabilizes: anyhow the derivation

may still grow, the polynomial 𝑠 does not change.

As a first simple example, suppose 𝑀 is a closed first-order term built using only 0, 1, ⊕𝑋 and

ifz(−,−,−), so that its typing in PCF⟨ ®𝑋 ⟩ only contains the type Bool. It is not difficult then to

construct, by induction on 𝑀 , a derivation 𝜋 : ⟨⊢𝑠0 0 | ⊢𝑠1 1⟩ that explores all trajectories of 𝑀
(i.e. for which supp(traji (𝜋)) = supp(J𝑀K𝑖 )). Notice that the derivation has size linear in the size of

𝑀 , since the index sets 𝐼 for any judgment can have at most two elements (the only two refinements

0, 1 of the type Bool). In this simplified setting, as illustrated in the example below, the construction

of 𝑠 can then be seen as a parametric variant of the Viterbi algorithm.

Example 7.9. Consider closed terms 𝑆0, 𝑆
1

𝑖 , . . . , 𝑆
𝑛
𝑖 : Bool, 𝑖 = 0, 1, 𝑛 > 0 and let 𝑃 = 𝑃𝑛 : Bool,

where 𝑃0 = 𝑆0 and 𝑃 𝑗+1 = ifz(𝑃 𝑗 , 𝑆
𝑗+1
0

, 𝑆
𝑗+1
1

). The term 𝑃 : Bool encodes the graphical model in Fig. 7a.

This model has 2
𝑛
trajectories leading to either 𝑆𝑛

0
, 𝑆𝑛

1
. There is a derivation 𝜋𝑛 of 𝑃 : ⟨⊢𝑠0 0 | ⊢𝑠1 1⟩

(of size linear in 𝑃 ) capturing all such trajectories, made of a chain of ifz-rules (the derivations
𝜋 𝑗+1 for the terms 𝑃 𝑗 are illustrated in Fig. 7b, supposing given derivations for 𝑆0 and the 𝑆

𝑗

𝑖
). The

polynomials 𝑠0 := 𝑠𝑛
0
and 𝑠1 := 𝑠𝑛

1
are constructed by choosing, at each step, the best way to expand

either 𝑠
𝑗

0
or 𝑠

𝑗

1
with the monomials 𝑢

𝑗

𝑙
, 𝑣

𝑗

𝑙
coming from either 𝑆

𝑗

0
or 𝑆

𝑗

1
. If the 𝑢

𝑗

𝑙
, 𝑣

𝑗

𝑙
were scalars, this

would indeed correspond to computing a Viterbi sequence for the model in Fig. 7a.

While in the case above it was possible to generate a single derivation encompassing all tra-

jectories of the term, this is not possible in general, because the term may have infinitely many

trajectories, which is typically the case if the term contains a fixpoint. Another problem is that, if

the term has some higher-order applications 𝑃𝑄 , the number of possible intersection types𝑚 ⊸ 𝑏

refining the type 𝐴 → 𝐵 of 𝑃 is also infinite, since𝑚 ∈ !J𝐴K may be arbitrarily long.
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This is why we construct our derivation incrementally. For two fixed parameters 𝑛, 𝑝 ∈ N, we
can always construct a derivation 𝜋 i

𝑛,𝑝 (𝑀) of 𝑀 : ⟨⊢𝑠 i⟩ that collects all P-derivations of ⊢ 𝑀 : i
in which the rule (Y) is used at most 𝑛 times and, for all intersection types𝑚 ⊸ 𝑏,𝑚 has at most

𝑝 elements and does not contain atoms i > 𝑝 . This corresponds to looking at reductions of𝑀 in

which fixpoints are unfolded at most 𝑛 times and, and in each 𝛽-reduction (𝜆𝑥.𝑃)𝑄 , the term𝑄 may

be duplicated at most 𝑝 times. In our algorithm, we initially set 𝑛 = 𝑝 = 1 and then progressively

increment either 𝑛 or 𝑝 until reaching stability.

Remark 7.1 (complexity of 𝜋 i
𝑛,𝑝 (𝑀)). In general, 𝜋 i

𝑛,𝑝 (𝑀) may not be constructible efficiently

(i.e. in polynomial time wrt |𝑀 |): the rules (@) and (Y) have arity at most 𝑝+1, while the corresponding
operations on terms are at most binary, yielding a derivation much larger than the corresponding

PCF⟨ ®𝑋 ⟩-typing, as well as a longer computation time due to 𝑝 + 1-ary products (as the time for

computing multiplications - optimized or not - grows exponentially in the number of factors, cf. Theorem

6.9); moreover, also the index sets 𝐼 may grow very large, as they vary over all refinings [𝑎1, . . . , 𝑎𝑘 ] ⊸ 𝑏,

with 𝑘 ≤ 𝑝 , of the corresponding types 𝐴 → 𝐵. However, when 𝑝 = 1, 𝜋 i
𝑛,1 (𝑀), corresponding to

looking to affine reductions (i.e. in which terms may be deleted but not duplicated) with at most 𝑛

Y-unfolding, only requires binary multiplications VN(𝑠1𝑠2) (computed in time O(𝑑4𝑛+2) by Theorem

6.9) and has size O(𝑛 |𝑀 |3𝑡 ), where 𝑡 is the maximum size of a simple type in𝑀 . This bound is obtained

by unfolding the subterms Y𝑃 as 𝑃𝑖𝑦 (so that the sum of all such 𝑖 does not exceed 𝑛), yielding a term

of size O(𝑛 |𝑀 |), observing that the arity of (@), (Y) is at most 2, and noticing that the index sets 𝐼

cannot exceed the number of affine refinings of the corresponding type (which are obtained by replacing

each atom Bool,N by any of [], [0], [1]), which is bounded by 3
𝑡
.

Example 7.10. Let us illustrate our algorithm for the term 𝑀2 from Example 2.3. Let 𝜋0 be a

derivation of 𝑁𝐷 : ⟨⊢𝑢0 0 | ⊢𝑢1 1⟩, capturing the four reductions of 𝑁𝐷 to either 0 or 1, where,
letting 𝑋 0 = 𝑋 and 𝑋 1 = 𝑋 , 𝑢𝑖 = 𝑋0𝑋

𝑖
1
+ 𝑋0𝑋

𝑖
2
. One can similarly construct a derivation 𝜋1 of

𝐵 : ⟨⊢𝑣𝑖 [] ⊸ [𝑖] ⊸ 1⟩𝑏∈{0,1} , capturing the two reductions (Y𝐵)i ↠ 𝐵(Y𝐵)i ↠ 1 that unfold Y

only once, where 𝑣𝑖 = 𝑋3+𝑖 . We construct 𝜋1
1,1 (𝑀) by combining 𝜋0 and 𝜋1 via the Y-rule yielding

𝑀2 : ⟨⊢𝑠 1⟩, where 𝑠 = 𝑢0𝑣0 + 𝑢1𝑣1 captures all reductions of𝑀2 with one Y-unfolding. To construct

𝜋1
𝑛,2 (𝑀), we must construct a derivation 𝜋2 of 𝐵 : ⟨⊢𝑡𝑖 𝑗 [[ 𝑗] ⊸ 1] ⊸ [𝑖] ⊸ 1⟩𝑖, 𝑗∈{0,1} , where

𝑡𝑖 𝑗 = 𝑋3+𝑖𝑋
𝑗

1+𝑖 , which tracks all pairs of reductions (Y𝐵)i ↠ 𝐵(Y𝐵)i ↠ (Y𝐵) (𝑁 i), of weight 𝑋3+𝑖 ,

and 𝑁 i↠ j, of weight 𝑋 𝑗

1+𝑖 . The derivation 𝜋1
2,1 (𝑀) of of𝑀2 : ⟨⊢𝑠 1⟩, is illustrated in Fig. 8, where

now 𝑠 = 𝑢0𝑣0 + 𝑢1𝑣1 + 𝑢0𝑡00𝑣0 + 𝑢0𝑡01𝑣1 + 𝑢1𝑡10𝑣0 + 𝑢1𝑡11𝑣1 captures all reductions of 𝑀2 with at

most 2 Y-unfoldings. With 𝑛 = 3, we can iterate the process adding a new Y-rule. Intuitively, this

should lead to add to 𝑠 all monomials 𝑤𝑎𝑏𝑐 := 𝑢𝑎𝑡𝑎𝑏𝑡𝑏𝑐𝑣𝑐 , for 𝑎, 𝑏, 𝑐 ∈ {0, 1}, corresponding to 3

iterations. However, each𝑤𝑎𝑏𝑐 is dominated by one monomial in 𝑠 : we have that either 𝑎 = 𝑏,𝑏 = 𝑐

or 𝑎 = 𝑐 ; if 𝑎 = 𝑏 holds, then𝑤𝑎𝑏𝑐 is dominated by 𝑢𝑎𝑡𝑎𝑐𝑣𝑐 , and similarly for the other cases. Hence

𝜋1
3,1 (𝑀) yields the same polynomial as 𝜋1

2,1 (𝑀). Moreover, further incrementing either 𝑛 or 𝑝 does

not make the polynomial change. In fact, we can easily see that the minimal polynomial 𝑠 produced

by 𝜋1
2,1 (𝑀) coincides 𝑁𝑃1

min
(𝑀2): an arbitrary trajectory of 𝑀2 yields a monomial of the form

𝑤𝑎1 ...𝑎𝑛+1 = 𝑢𝑎1𝑡𝑎1𝑎2 . . . 𝑡𝑎𝑛𝑎𝑛+1𝑣𝑎𝑛+1 , and if 𝑛 ≥ 2, then the monomial𝑤𝑎1 ...𝑎𝑛+1 is dominated by some

monomial in 𝑠 . As anticipated in Section 3, it follows then that 𝔡1 (𝑀2) = deg(𝑠) = 5.

The result below shows that the algorithm above stabilizes onto the minimal Newton polynomial.

Theorem 7.11. For any PCF⟨ ®𝑋 ⟩-term𝑀 : Bool and i ∈ {0, 1}, there exists 𝑛, 𝑝 ∈ N such that the

derivation 𝜋 stab
:= 𝜋 i

𝑛,𝑝 (𝑀) is stable and proves𝑀 : ⟨⊢𝑠 i⟩, where 𝑠 = (tJ𝑀KXi )min = 𝑁𝑃 i
min

(𝑀).
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𝜋1 + 𝜋2

𝐵 :

〈
⊢𝑣𝑖 [] ⊸ [𝑖] ⊸ 1

�� ⊢𝑡𝑖 𝑗 [[ 𝑗] ⊸ 1] ⊸ [𝑖] ⊸ 1
〉
𝑖, 𝑗∈{0,1}

𝜋1

𝐵 :

〈
⊢𝑣𝑗 [] ⊸ [ 𝑗] ⊸ 1

〉
𝑗∈{0,1}

Y

Y𝐵 :

〈
∅
�� ⊢𝑣𝑗 [ 𝑗] ⊸ 1

〉
𝑗∈{0,1}

Y

Y𝐵 :

〈
⊢𝑣𝑖+𝑡𝑖0𝑣0+𝑡𝑖1𝑣1 [i] ⊸ 1

〉
𝑖∈{0,1}

𝜋0

𝑁𝐷 :

〈
⊢𝑢0 0

�� ⊢𝑢1 1
〉

@

𝑀2 :

〈
⊢𝑢0𝑣0+𝑢1𝑣1+𝑢0𝑡00𝑣0+𝑢0𝑡01𝑣1+𝑢1𝑡10𝑣0+𝑢1𝑡11𝑣1 1

〉
Fig. 8. Derivation 𝜋stab = 𝜋1

2,1
(𝑀2), where 𝑢𝑖 = 𝑋0𝑋

𝑖
1
+ 𝑋0𝑋

𝑖
2
, 𝑣𝑖 = 𝑋 3+𝑖 and 𝑡𝑖 𝑗 = 𝑋3+𝑖𝑋

𝑗

1+𝑖 .

Proof. By Corollary 5.5 supp(J𝑀KXi )min is finite and by Theorem 7.8 all its points are reached

by some Ptrop-derivations. We can then set 𝑛 and 𝑝 to be larger than the corresponding numbers of

Y-unfoldings and multiset sizes in all such (finitely many) derivations. □

Stabilization at 𝑛, 𝑝 is a Π0

1
(i.e. non-recursive) property: it means that for any 𝑛′, 𝑝′ larger than

𝑛, 𝑝 , the produced polynomial does not change. Therefore we might not be able to tell when the

algorithm did actually stabilize. Recall that, by Theorem 5.9, we cannot hope to compute 𝑁𝑃 i
min

(𝑀)
in all situations (even though we always compute (traj𝑖 (𝜋))min, by Proposition 7.5). In practice, we

can let the proof-search algorithm terminate after the polynomial has remained stable for some

fixed number of iterations (for instance, one stable iteration was enough to reach 𝑁𝑃 i
min

(𝑀) in
Examples 7.2 and 7.10). Let 𝜋̃ stab

be the derivation obtained after a finite number of stable iterations.

Remark 7.2 (reaching efficiency in the affine case). As we observed, when the most-likely

reductions of𝑀 are affine, we can reach 𝜋 stab
via the derivations 𝜋 i

𝑛,1 (𝑀), which have size O(𝑛 |𝑀 |3𝑡 ).
This is indeed the situation underlying our examples 7.2, 7.9 and 7.10. By contrast, any affine reduction

of 𝑀 can make at most |𝑀 | probabilistic choices (since any choice strictly decreases the size of the

term), so the trajectory space explored by each such derivation has in general size O(2 |𝑀 | ).

7.3.2 Extracting a (Partial) Solution from 𝜋̃ stab. We now show how the set selected_trajs𝑖 (𝑀)
is extracted from a (candidate) stable derivation.

By a straightforward adaptation of the algorithm VN (cf. Remark 2.2) and of the Ptrop-rules we
can perform a traceback of 𝑠 , i.e. keep track, at each step of the construction of 𝜋̃ stab

, of a word

𝑤𝜇 ∈ {0, 1}∗, describing the sequence of probabilistic choices made during a reduction 𝑀
𝜇
↠ i;

the word 𝑤𝜇 then traces back one most likely explanation. Moreover, for any monomial 𝜇 in 𝑠 ,

we can compute the normal cone of (the convex polytope generated by) 𝑠 at vertex 𝜇, defined as

N(𝜇; 𝑠) = {𝑥 | 𝑥 · 𝜇 = min𝜈∈𝑠 𝑥 · 𝜈}, see [28, p. 193]. Computing N(𝜇; 𝑠) corresponds to solving

the linear system of inequalities {(𝜇 − 𝜈)𝑥 ≤ 0}𝜈∈𝑠 , which can be done via linear programming

(cf. [51]). Observe that N(𝜇; 𝑠) precisely captures the set of (− ln-)values that maximize 𝜇 across all

vertices in 𝑠 , that is, that make the pair (𝜇,𝑤𝜇) a most likely explanation across those in 𝑠 .

We can then let selected_trajs𝑖 (𝑀) = {(𝜇,𝑤𝜇,N(𝜇; 𝑠)) | 𝜇 in 𝑠}. The following holds:

Theorem 7.12. (1) the pairs (𝜇,𝑤𝜇) in selected_trajs𝑖 (𝑀) identify the most likely trajecto-

ries in traj
𝑖 (𝜋̃ stab) (resp. the most likely trajectories𝑀 ↠ i in case 𝜋̃ stab = 𝜋 stab

).

(2) the sets N(𝜇; 𝑠) in selected_trajs𝑖 (𝑀) identify all (− ln)-values of the parameters ®𝑋 mini-

mizing 𝜇 across all traj
𝑖 (𝜋̃ stab) (resp. across all trajectories𝑀 ↠ i in case 𝜋̃ stab = 𝜋 stab

).

Whenever 𝜋̃ stab = 𝜋 stab
, i.e. the proof search reached the Newton polynomial, the result above

states that selected_trajs𝑖 (𝑀) provides a correct answer to both (I1) and (I2). Otherwise, it

provides an answer to (I1) and (I2) only relatively to the trajectories explored by 𝜋̃ stab = 𝜋 i
𝑛,𝑝 (𝑀). This

means that any selected trajectory could still be dominated by some intuitively larger one, i.e. one

requiring either more than 𝑛 Y-unfoldings or 𝛽-reductions performing more than 𝑝 duplications.
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8 Conclusion
Related Work. A growing literature has explored foundational approaches to graphical proba-

bilistic models and higher-order languages for them, both from a categorical [15, 30, 31, 48, 48] and

from a more type-theoretic perspective [23]. Methods for statistical inference based on tropical

polynomials and the Newton polytope, in the line of Section 4, have been explored for several types

of graphical probabilistic models, including HMM and Boltzmann machines [14, 38, 45, 46, 49].

Tropical geometry has also been applied to the study of deep neural networks with ReLU activation

functions [12, 38, 53], as well as to piecewise linear regression [39]. The interpretation of proba-

bilistic PCF in the weighted relational model of linear logic is well-studied. The fully abstract model

of probabilistic coherent spaces [21] relies on it. Tropical variants of this semantics are studied first

in [35], and more recently in [6]. Beyond the one from [21], many other kinds of intersection type

systems to capture probabilistic properties have been proposed, e.g. [3, 10, 29].

Future Work. In this paper we demonstrated the potential of combining methods from program-

ming language theory (especially, weighted relational semantics) and tropical geometry, by applying

them to study most likely behaviours of probabilistic higher-order programs. We are convinced

that this interaction leads to many other interesting applications in programming language theory.

For instance, in this paper we only manipulated the tropicalization by means of the trivial

valuation val0 : N∞ → T that sends 0 to ∞ and all coefficients 𝑛 > 0 to 0. This was enough to

study the most probable outcomes, but considering other valuations may lead to capture different

properties of probabilistic programs. For example, val𝑐 : R≥0 → R defined by val𝑐 (𝑥) = −𝑐 ln𝑥
yields an exciting connection with differential privacy [19] (already studied from the perspective of

programming languages [5, 17, 24]), that we are currently exploring: for a function 𝑓 : db → Dist(𝑋 )
(corresponding to some probabilistic protocol), it is not difficult to see that 𝑓 is 𝜖-differentially

private precisely when the function val𝑐 ◦ 𝑓 : db → [𝑋 → R] is 𝜖-Lipschitz continuous, taking
the Euclidean distance on R. As tropical polynomials are always Lipschitz-continuous (they are

piecewise linear functions), this suggests that a program with finite tropical degree (w.r.t. the

valuation val𝑐 , not val0 as in this work) could be proved differentially private.

Another important future work is to implement our type system, in order to mechanise, in

interaction with the user, some inference tasks over programs as explained in Section 7. Related

to that, we notice that the crucial notion of minimal monomial in a (Newton) polytope, that we

develop in Section 6, is reminiscent of that of Gröbner basis in computational algebra. Similarly, we

wonder whether the algebra of generating functions – essentially, the formal power series given by

our parametric interpretation – reflects computational properties of programs.

Beyond that, there are other natural areas of applications. For instance, [6] illustrated a notion of

differentiation for tropical power series, relying on the theory of cartesian differential categories

[9, 37], that aligns with existing notions in the literature on tropical differential equations [27].

Finally, the growing interest towards higher-order frameworks for automatic differentiation [41, 50]

suggests to look at the tropical methods currently employed for ReLU neural networks [25, 38].
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