Tropical Mathematics and the Lambda-Calculus II:
Tropical Geometry of Probabilistic Programming Languages

DAVIDE BARBAROSSA, University of Bath, United Kingdom
PAOLO PISTONE, Université Claude Bernard Lyon 1, France

In the last few years there has been a growing interest towards methods for statistical inference and learning
based on computational geometry and, notably, tropical geometry, that is, the study of algebraic varieties
over the min-plus semiring. At the same time, recent work has demonstrated the possibility of interpreting
higher-order probabilistic programming languages in the framework of tropical mathematics, by exploiting
algebraic and categorical tools coming from the semantics of linear logic. In this work we combine these two
worlds, showing that tools and ideas from tropical geometry can be used to perform statistical inference over
higher-order probabilistic programs. Notably, we first show that each such program can be associated with a
degree and a n-dimensional polyhedron that encode its most likely runs. Then, we use these tools in order to
design an intersection type system that estimates most likely runs in a compositional and efficient way.

CCS Concepts: » Theory of computation — Lambda calculus; Probabilistic computation; Categorical
semantics; » Mathematics of computing — Probabilistic inference problems; Linear programming.

Additional Key Words and Phrases: Probabilistic Lambda-Calculus, Tropical geometry, Relational Semantics,
Linear Optimisation

ACM Reference Format:

Davide Barbarossa and Paolo Pistone. 2026. Tropical Mathematics and the Lambda-Calculus II: Tropical Geom-
etry of Probabilistic Programming Languages. Proc. ACM Program. Lang. 10, POPL, Article 33 (January 2026),
30 pages. https://doi.org/10.1145/3776675

1 Introduction

From Probabilistic Models to Probabilistic Programming Languages. Probabilistic models play a
fundamental role in many areas of computer science, such as, just to name a few, machine learning,
bioinformatics, speech recognition, robotics and computer vision. For many common problems
(like, for example, identifying the regions of DNA that code for some specific protein or tracking the
location of a vehicle from the data produced by possibly faulty sensors) finding an exact solution
requires to enumerate an impossibly large list of possibilities; by contrast, a probabilistic model
may allow one to focus only on those (usually, much less) possibilities which are more likely
to occur, under normal circumstances. In this respect, models like Bayesian Networks (BN) or
Hidden Markov Models (HMM) provide an extremely well-studied and modular approach making
the representation of (our current knowledge of) the system under study independent from the
inference algorithms that can be applied in order to answer specific questions about it.

While probabilistic models provide a description of a system under conditions of uncertain
knowledge, probabilistic programming languages (PPL) provide ways to specify such models via
programs: the execution of the program produces the model, in the sense that the probabilistic
reductions of the program describe the trajectories of the model. The inference tasks associated with

Authors’ Contact Information: Davide Barbarossa, University of Bath, Bath, United Kingdom, db2437@bath.ac.uk; Paolo
Pistone, Université Claude Bernard Lyon 1, Lyon, France, paolo.pistone@ens-lyon.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART33

https://doi.org/10.1145/3776675

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

https://orcid.org/0000-0003-4608-8282
https://orcid.org/0000-0003-4250-9051
https://doi.org/10.1145/3776675
https://orcid.org/0000-0003-4608-8282
https://orcid.org/0000-0003-4250-9051
https://orcid.org/0000-0003-4250-9051
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776675

33:2 Davide Barbarossa and Paolo Pistone

a model are thus naturally related to the study of the probabilistic execution of the corresponding
program (e.g., what is the probability that the program will return True? Or that it terminates?).

The goal of PPL like e.g. Church or Anglican (to name two languages that rely on the LISP
architecture), is to streamline the activity of probabilistic modeling, by exploiting features of pro-
gramming languages like compositionality and higher-order functions. This becomes particularly
relevant when considering possibly infinitary models that take temporality into account, like
e.g. template-based Bayesian Networks, which can be conveniently described in higher-order
functional languages, cf. [23]. The study of PPLs has recently seen a flourishing of research direc-
tions, going from more foundational/category-theoretic approaches [15, 30, 31, 48], to others more
oriented towards inference algorithms and their efficiency like [23].

The Tropical Geometry of Probabilistic Models . The application of methods from computational
algebraic geometry in areas like machine learning and statistical inference is well investigated.
Among such methods a growing literature has explored the application of ideas from tropical
geometry to the study of deep neural networks and graphical probabilistic models [12, 38, 45, 46, 53].

Tropical geometry is the study of polynomials and algebraic varieties defined over the min-
plus (or the max-plus) semiring: a tropical polynomial is obtained from a standard polynomial by
replacing + with min and X with +. Several computationally difficult problems expressible in the
language of algebraic geometry admit a tropical counterpart which is purely combinatorial and, in
some cases, tractable in an effective way. For example, while finding the roots of a polynomial is
a paradigmatic undecidable problem, tropical roots can be computed in linear time and used to
approximate the actual roots of the polynomial [43, 44].

Concerning probabilistic models, it has been observed that several inference algorithms based
on convex optimization, like the Viterbi algorithm, have a “tropical flavor” [49]. Usually, graphical
probabilistic models express the probability of an event as a polynomial pg, which intuitively adds
up the probabilities p; of the (so many) mutually independent situations i that might produce
E. A typical problem, for instance when computing Bayesian posteriors, is to know, given the
knowledge that the event E occurred, which situations i are the most likely to have produced E.
While comparing all the situations i is certainly not feasible, works like [45, 46] have shown that
the study of the Newton polytope of the tropical polynomial associated to pg provides an efficient
method to select the potential solutions i.

The Tropical Geometry of PPLs. While ideas from tropical mathematics have been applied success-
fully to probabilistic models like HMM or BN, in this paper we are concerned with the following,
broader, question: would it be possible to exploit the computational toolkit of tropical geometry
as an inference engine for the programs of some higher-order programming language, and, as a
consequence, for the large class of probabilistic models that this language may represent?

Our approach relies on a recent line of work [6] that has demonstrated the possibility of in-
terpreting higher-order probabilistic languages within the setting of tropical mathematics. This
interpretation relies on the weighted relational semantics (WRS) [35], a well-studied class of models
of PCF and related languages that is parametric on the choice of a continuous semiring Q. The
WRS arises from the literature on linear logic and has been at the heart of numerous investigations
and results about programming languages with non-determinism, probabilities or even quantum
primitives [13, 20, 21, 33, 34, 47].

When Q is the min-plus semiring (on Ry¢ U {oo} or N U {c0}), one obtains a semantics of
probabilistic PCF (pPCF) that has been shown to capture the most likely behavior of a program
[6, 35]. For example, of the many ways in which a program M of type Bool may reduce to True,
only those which have the highest probability to occur are represented in the semantics. Therefore,
the tropical WRS intuitively “solves” the inference task of selecting the most likely execution

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:3

paths of a pPCF- program, and, along with them, the most likely trajectories in the corresponding
probabilistic model. However, as this semantics is neither finitary nor computable in general, the
obvious question is: to which extent could such “solutions” be produced in an effective way?
This paper provides an answer to this question, obtained in two steps: first, we exploit the tropical
setting to show that the problem of describing a most likely trajectory for a pPCF program can be
reduced to a search problem within some finite (albeit possibly very large) space. This fact is non-
trivial, since, unlike standard BN, the probabilistic models corresponding to pPCF programs may
have an infinite trajectory space. While this fact is established via a non-constructive argument, by
combining ideas from tropical geometry and programming language theory, we design a recursive
procedure that, given a higher-order program of ground type, explores the trajectories of the
corresponding infinitary model in a compositional way. This procedure is proved to converge to a
solution of the following two standard inference tasks (cf. Theorem 7.12):
(I1) select the most likely trajectories of the model,
(I2) for a fixed trajectory 0, identify the values of the probabilistic parameters making 6 most likely.
The convergence of this procedure is itself non-recursive, as the underlying problem is undecidable,
but the partial solutions provided at each stage of the computation are correct for a restricted set of
trajectories approximating the behaviour of the program. Furthermore, we show that in several
interesting cases (e.g. when considering an affine higher-order program) our method does indeed
produce a correct answer, and it does so efficiently: while the number of possible trajectories is
exponential in the size of the program, the most likely ones are found in polynomial time.

The Tropical Degree. As we said, our first result shows that the trajectory space for a pPCF
program can be reduced to a finite one. This is obtained by exploiting a representation of such
programs via tropical polynomials. Indeed, graphical probabilistic models like BN and HMM are
often presented algebraically via families of polynomials in a given set of parameters. The WRS
extends this presentation to pPCF programs, except that, due to their higher-order nature, programs
correspond to power series, not just polynomials, in the parameters. Intuitively, if a finite sum of
monomials is enough to add up finitely many independent trajectories that may lead to the same
result, an infinite sum is required when the number of trajectories is infinite. When considering the
interpretation of pPCF over the tropical semiring, these power series are turned into tropical analytic
functions (taf, for short), that is, continuous functions that can be written as f(x) = infje ¢;(x),
i.e. an inf of possibly infinitely many linear maps ¢;(x). While tropical polynomials and their
geometric properties are very well-studied, the literature on taf is still scarce [6, 43].

Our central result here, Corollary 5.5 from Section 5, is that any program M of ground type,
say Bool, is represented by a taf that is in fact a tropical polynomial (in other words, that f can
be written as f(x) = min;cjcy ¢; for some finite subset J C I). This follows from a general result
(cf. Proposition 5.4) about tafs with discrete coefficients. The meaning of this result is that, among
the many trajectories that may lead to the same event, only a finite portion has a chance of occurring
“most likely”. Intuitively, if we think of M as describing a probabilistic model that iterates a given
procedure until it produces a given result o (a typical Las Vegas algorithm), then the probability
that o was obtained after no less than n iterations will reach its maximum after a finite number D
of steps: the greater the number of iterations in a reduction of M, the lower the probability that
this reduction may actually have occurred. This number D is what we call tropical degree of M, and
coincides with the (finite) degree of the tropical polynomial that captures the behavior of M.

Statistical Inference via Intersection Types and the Newton Polytope. Even once we have reduced
the trajectories of our program to a finite set, this set may still be too large to be enumerated in
practice. The second step is thus to show that the trajectory space can be further reduced to one of
a more tractable size, in order to have a hope to access it in a feasible computational way. Our first

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:4 Davide Barbarossa and Paolo Pistone

result here is to associate a program M with a n-dimensional polyhedron N Py;, (M), a variant of the
standard Newton polytope called the minimal Newton polytope, that encodes the most likely runs of
M in a more optimized way (cf. Theorem 6.6). Then, we design a type system Py, that captures the
most likely executions of the program compositionally in M (cf. Theorem 7.7), and we show that
this system can be used to design a method that reconstructs the polytope N Ppin (M) in a recursive
way. As anticipated before, while the termination condition for this method is non-recursive, we
discuss the situations in which it can be used to provide correct solutions efficiently. The system
Piop uses non-idempotent intersection types [4, 11, 18, 21], a well-studied technique to capture the
quantitative behavior of higher-order programs. In Py, a single type derivation may explore a
plurality of possible executions of the program, at the same time selecting a small enough set of most
likely trajectories; to do that it makes use of an algorithm to compose graphical models inspired by
the Viterbi algorithm for HMM and relying on the computation of the minimal Newton polytopes
of the underlying polynomials (cf. Theorem 6.9).

Outline of the Paper. In Section 2 we introduce the language PCF(X), a parameterized version
of probabilistic PCF inspired from [21, 35] that will serve as our base language, and we illustrate
how its programs describe potentially infinite discrete probabilistic models. Section 3 contains an
informal overview on the problem of finding most likely explanations for PCF(X) programs and
of our main ideas to overcome them. In Section 4 we introduce a parameterized version of the
weighted relational semantics, yieding a model of PCF(X) in terms of formal power series. Section
5 contains our first result, that is, that first-order type programs of PCF(X) have a finite tropical
degree. Section 6 contains our results on the minimal Newton polytope and our variant of the
Viterbi algorithm to compute the tropical product of polynomials. In Section 7 we introduce the
intersection type system Py, and the method, relying on it, to enumerate the most likely runs.
Finally, in Section 8 we discuss related work and future directions.

2 Parametric PCF: Specifying Models via Higher-Order Programs

In this section we introduce PCF()?), a variant of probabilistic PCF [21, 35], that will serve as our
base language in the rest of the paper. We then illustrate in which sense the programs of PCF(X)
describe a class of discrete (infinitary) probabilistic models that we will explore in the next sections.

2.1 The language PCF(X)

The language PCF()?) differs from standard probabilistic PCF [21, 35] in that real probabilities are
replaced by a finite number of parameters X1, .. ., X,. For instance, a probabilistic term M ®, N,
corresponding to a choice yielding M with probability p and N with probability 1 — p, is replaced
in PCF()_(>) by a parametric term M @x N, intuitively corresponding to a choice between M and N
depending on some unknown parameter X. A similar language with probabilistic parameters was
used already in [21] to establish the full abstraction of the semantics of probabilistic coherent spaces.

The reason for considering, in this work, a language where explicit probabilities are replaced by
parameters is twofold. Firstly, in probabilistic models like BN or HMM it is standard to take the
underlying basic probabilities as parameters of the model, for instance when considering problems
like that of computing the maximum likelihood of an event. In the next section we will make more
precise the role of parameters in the inference tasks we consider in this work.

The second reason is that we will explore, in parallel, an interpretation of PCF()Z) that associates
parameters with actual probabilities g € [0, 1] as well as a second interpretation that associates the
same parameters with negative log-probabilities z = —Inq € RY). Indeed, the methods based on

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:5

I'rM:N T+ M :Bool
T'r0:N Tk succ M,pred M : N I'+0,1:Bool 'rM:N
I'x:ArM:B I'rM:A—> B I'EN:A
I''x:Arx:A 't Ax.M:A—> B I'-MN:B
'rM:N 'FN,P:A 'rM:A 'FN:A I'rM:A-> A
I+ ifz(M,N,P) : A I'rMox N:A TFrYM:A

(a) Typing rules.

X
ifz(0, M, N) H) M (Ax.M)N H> M[N/x] pred 0 H> 0 Mex, N—-M
X
ifz(succ n, M, N) H» N M H) M(YM) pred (succ M) H> M Mex; N> N
ifz(M, P, Q)i ifz(N, P, Q) Mp 5 NP pred M pred N suce M suce N

(b) Parametric reduction rules. In the last line, we suppose M LN

Fig. 1. Rules of PCF()_(').

tropical geometry that we develop exploit the latter, more combinatorial, viewpoint as a means to
gain knowledge about the former.

Definition 2.1. Let X1, ..., X, be n distinct formal variables. The terms of PCF()_(>) are defined by
the following grammar (and quotiented by usual a-equivalence):

M = 0| succM | pred M | ifz(M,M,M) | x | Ax. M | MM | YM | M &x, M

We let n := succ™(0). The types of PCF()?) are defined by A ::= Bool | N | A — A. The typing rules
are presented in Fig. 1a (where contexts are finitely many variable declarations. Also, observe that
we overload 0 and 1 as being both Booleans and integers).

For any set %, let IY indicate the set of finite multisets over X. We indicate a multiset € !X as a
formal monomial [],cx a*(?. The operational semantics is given by a reduction relation M 5 N ,
where 1 €/{X}, X1, ..., X, Xy}, defined by the relexive and transitive closure of the rules in Fig. 1b,
which include standard PCF weak head CbN reductions, as well as parametric reductions for the

. . [] .. Hv
choice operator. For the reflexive closure, we set M - M; for the transitive closure, we set M - P
whenever M L Nand N > P.

Example 2.2. For M; = (1®x 0) ®x ((1®x 0) ®x (0 ®x 1)) there are three reductions M % 0,
that give iy = XX, jty = i3 = XX’ and three reductions M —» 1, with v; = X2, v, = X2X, v3 = X .

REMARK 2.1 (RELATION WITH PROBABILISTIC PCF). By reading the parameters Xy, ..., X, as reals
1., qn € [0,1] the typing and reduction rules of PCF(X) are just rules for a standard PCF with
biased choice operators M &, N (where instead of adding to a multiset, we take the product in [0, 1]).
In this way, standard properties like e.g. subject reduction are easily deduced from those of pPCF.

REMARK 2.2. We could have chosen to label reductions with finite words over X;,X; instead of

7

multisets, so that each label i1 in M - N univocally determines one reduction of M. We chose multisets
because this is more natural in view of the formal manipulations discussed in the next sections. We
will quickly go back at the possibility of using words instead at the end of Section 7.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:6 Davide Barbarossa and Paolo Pistone

time 0 time ¢ + 1

(a) Bayesian Network for (b) Dynamical Bayesian Net- (c) Unrolled Bayesian Network
Example 2.2. work for Example 2.3

Fig. 2. Examples of Bayesian Networks.

2.2 PCF()?) and Graphical Probabilistic Models

Consider again the term M; from Example 2.2. What kind of probabilistic model does M; specify?
A possible illustration is provided in Fig. 2a: a simple Hidden Markov Model model with: one
observable variable o € {0, 1}, corresponding to the result of the execution of Mj; three hidden
independent random variables hy, hy, hs € {0, 1} (read: left, right), each corresponding to the choice
made at the i-th step of a reduction of M;; a conditional probability P(o = 1 | hy, hy, hs) (and
similarly for o = 0), modeling the probability of M; reducing to 1 following the reduction specified
by the h’s. Notice that we choose three variables h’s, while sometimes M; only performs two

choices, for example in M)—(; 1. To solve this mismatch, we can declare that the previous reduction
of M corresponds to both (hy, hy, h3) = (0,0,0) and (hy, hy, h3) = (0,0, 1) in the HMM. In this way,
we have, parametrically in X, X, that P(o = 1) = (X? + X?X) + X’X + X ® For each probability
assignment X := p, X := 1 — p of the parameters, the above probability now becomes the correct

Plo=1)=p*+p*(1-p)+(1-p)°. (1)

In fact, it is well-known that graphical models like HMM or BN can be encoded as terms of some
PCF-like language [23, 26], and the overall goal of this section is to suggest that PCF programs can
be thought as specifying complex HMM of some kind. However, due to their higher-order nature,
as well as the possibility of defining functions recursively via the fixpoint Y, a general program of
PCF()?) need not describe a finite probabilistic models like those illustrated so far.

Example 2.3. Let My = YB(ND) : Bool, where
B := Afx.ifz(x, ifz(O0, f(NO), 1), ifz(O1, f(N1),1)) : (Bool — Bool) — Bool — Bool,

D = 0 &x, 1: Bool represents an initial Distribution of Booleans, N = Ax.ifz(x,0 ®x, 1,0 &x, 1) :
Bool — Bool a probabilistic protocol to turn a distribution into a New one, and O = Ax.ifz(x, 0 ®x,
1,0 ®x, 1) : Bool — Bool another probabilistic protocol to Observe a Boolean value. The behaviour
of M; can be recast in pseudocode as follows:

d = sample(D) ; while(true) { d = sample(Nd) ; o = sample(Od) ; if (o == 1) {return 1} }.

We see that M, describes thus a dynamic Bayesian Network (cf. [32], ch. 6) as the one illustrated in
Figg. 2b and 2c: a potentially infinite DAG constructed following an iterative pattern. Notice that
the number of hidden and observed variables is potentially infinite: each iteration produces a new
hidden variable D; (corresponding to the value produced by applying N i times to D) and a new
observation O;. By contrast, the number of parameters of the model is finite, as it consists of the
parameters X, — X4 in the terms D, N, O.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:7

In the example above, in order to reconstruct the model described by the program, an essential
ingredient is to be able to identify a certain pattern that is repeated over and over, so as to provide
a compact graphical representation of how the hidden and observed variables relate to each other.
Obviously, extracting such patterns may be very hard, or even undecidable, to do for an arbitrary
PCF(X) program. Another solution would be to consider a somehow flat model with one observed
variable o, corresponding to the final result of the execution (if any), conditioned on infinitely many
hidden variables hy, hy, hs, . . ., corresponding to the unbounded number of choices made during a
terminating reduction (which may be arbitrarily long).

However, in a such a model the dependency of 0 on any variable h; may be rather difficult to
track explicitly, since infinitely many and arbitrarily long different reductions may lead to the same
result. As we’ll see, this dependency is in general not expressed by a polynomial as in standard
HMM or BN, but by a power series in the parameters. At the same time, the flat model provides no
insight on how such complex dependencies might be decomposed following the structure of the
program. In other words, it is not compositional.

Reconstructing the probabilistic model underlying a program of PCF(X) is indeed tantamount
to reconstructing the semantics of the program. Still, as we’ll see, linear logic and programming
language theory provide us with precisely the good methods to, first, design a probabilistic semantics
capturing the relevant power series and, second, design a syntactic method (i.e. a type system) to
fully approximate the semantics of the program. This is the approach we describe through Sections
4-7. But before delving into that, let us look more closely at the inference tasks that we consider.

3 Can We Do Statistical Inference over PCF Programs?

The overall goal of this work is to demonstrate the possibility of inferring the most likely trajectories
in the models specified by higher-order probabilistic programs. In this section we provide an
informal overview on the difficulties lying ahead of this goal, and a first intuitive illustration of our
two main ideas to overcome them: the notion of tropical degree (cf. Section 5), and an adaptation of
the Viterbi algorithm from HMM to higher-order programs (cf. Sections 6 and 7).

3.1 Most Likely Explanations and the Tropical Degree

The typical inference task for a Bayesian Network is to compute the marginal probabilities associated
with an assignment & to the observed variables. This corresponds, intuitively, to summing up the
probabilities of all trajectories producing the outcomes o, that is, of all possible assignments 0 to the
hidden variables, as in (1). In a finite BN the marginal probabilities can be expressed as polynomials
in the parameters and can be computed via algorithms like e.g. the sum-product algorithm [52].

In this work we are not interested in the problem of computing marginal probabilities. Indeed,
when considering probabilistic models, like HMM, with a marked distinction between hidden and
observed variables, a natural question is to predict the most likely explanation for a given outcome:
supposing that we observed that our program returned True, what are the trajectories (i.e. the
values of the hidden variables) that have the most chances of having produced this result?

More precisely, we are interested in the following two inference problems:

(I1) given both the observation ¢ and the values ¢ assigned to the parameters, compute the
maximum a posteriori probabilities

max {P(B =3,h=0X= 7))) 7] assignment to the hidden variables} (2)
or, equivalently, the minimum a posteriori negative log-probabilities:

min{ —InP(o = 5',i_1)= 5,)_5: —Ing)

0 assignment to the hidden Variables} 3)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:8 Davide Barbarossa and Paolo Pistone

and produce one such assignment g to the hidden variables that provides a most likely
explanation for the observation &;

(I2) given both the observation ¢ and the hidden data 6, identify the values of the parameters X
that make the assignment 6 the most likely explanation of G, i.e. compute the set

{cie [0,1]" ‘ 5:argmaxﬁ{P(a:aﬁzﬁ,)?zq)}} @)

Coming back again to our running example Mj, let us show how to compute solutions to both
problems. For (I1), considering the observation o = 1, and fixing values e.g. X = X = % for the
parameters, we are led from (1) and (3) to compute

min{ —In X2, —In X2X, —ln)_(3} =min{2z,2z + 2,3z} =2z =2In2, (5)

wherez=-InX,z=-InX, showing that the leftmost reduction is the most-likely to produce the

outcome 1 under the parameter assignment X, X > % For (I2), for instance, we may wish to know

for which values of X, X the rightmost trajectory becomes the most likely to produce the result 1.
Using (5), we are led to find z,z such that min{2z, 2z + z, 3z} = 3%, yielding the condition z < %z

2
thatis, X < X* (eg. X = %,)_(= %).

At this point the connection with tropical geometry strikes the eye: the expression min{2z, 2z +
7,3z}, obtained by replacing, in (1), the outer sum by a min, is an example of a tropical polynomial,
i.e. a polynomial with min in place of + and + in place of X. In fact, solving problems like (I1)
essentially amounts to computing marginal probabilities in a tropical setting (i.e. in which sums
are replaced by mins and multiplications by sums).

For finite HMMs, well-known algorithms like the Viterbi algorithm can be used to compute, in an
efficient way, solutions to problems (I1) and (I2). This algorithm can indeed be seen as a “tropical”
variant of the sum-product algorithm [49]. Still, as we discussed above, we are here considering
models with infinitely many hidden variables, and thus, with infinitely many trajectories. How
could one solve such an infinitary optimization problem? Here is where our fundamental idea comes
into play: while a PCF(X) program may well produce infinitely many, arbitrary long, different
trajectories, one might well guess that, since the probability assigned with a trajectory is obtained
by multiplying the same finite number of parameters at each iteration, such probabilities should
start to decrease after a sufficiently long number of reduction steps.

For example, consider the experiment of repeatedly tossing a coin with bias X until a head is
produced. This is represented in PCF()_(>) by the program below

M; =Y(Ax.x &x 1) : Bool

The probability of getting the first head at iteration n + 1 is thus XX " and the total probability is
expressed by the power series P(M —» 1) = Y00 XX ", that sums over infinitely many trajectories.
At the same time, it is clear that, across all these trajectories, the most likely explanation for a head
is that we obtained it at the first iteration, since ¢ > q(1 — q)" for all possible choice q for X. Indeed,
all this can be restated as the observation that, forz= —-InX,z=-InX € [0, +00], the inf of the
sequence below is reached by its first element:

inf{ - ln(X)_(n)} =inf {z +nz} =z.
n n
Consider now the term M, from Example 2.3. We will see (cf. Example 7.10) that, in a reduction

H
M; - 1 with n calls to Y, the monomial y has degree 2n + 3, corresponding to 2n + 3 independent
probabilistic choices, and the probability of getting 1 starts to decrease after the second iteration.

This implies that a reduction M, % 1 of maximum probability can always be found among those

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:9

with deg ;1 < 5. In more algebraic terms, in the power series describing the probability P(M, - 1),
all monomials of degree greater than 5 are in fact dominated by some monomial of degree < 5.
Moving to the negative Ins, the inf over all trajectories must reduce to a finite min, in fact a tropical
polynomial, containing only the monomials of degree < 5:

inf {monomials of degree n} = min { monomials of degree n < 5}.

This value 5 is what we call the tropical degree of M, noted d(M): it is the smallest number n for
which we can find a finite set S of trajectories such that all trajectories in S correspond to reductions
with at most n choices, and any trajectory of the program is dominated by some trajectory in S. Our
first result is that any program M : Bool of IE’CF()_(>) has a finite tropical degree d(M) (Corollary
5.5), that is, that the most likely explanations for the results produced by M can always be found
within a finite trajectory space.

3.2 Most Likely Explanations Efficiently, via the Newton Polytope

Even once the space of trajectories for an arbitrary program M : Bool has been reduced to a finite
one, this space may still be too large to explore in practice. For instance, consider the following
higher-order pPCF program

My = (Ax.x &p, x)(Ax.x ©p, X) ... (Ax.x ®p, 2)1,

where p1, ..., pn € [0,1] are fixed probabilities. Observe that M, always terminates on the normal
form 1, and there are exactly 2" reductions M, —» 1, each of probability g, ; - - - g6, n, Where for
0 €{0,1}" weset qp; :=p;and q1; :=1— p;.

Suppose now we want to find the probability of a most likely reduction path of My (to 1). Writing

zp,; for —Inp; and z;; for —In(1 — p;), the maximum probability above is the minimum of the
corresponding negative log-probabilities:
Remark also that computing the arg min, instead of the min above, gives the most likely trajectories.
In either cases, a naive approach to this computation would inspect all possible trajectories. However,
this leads to computing and comparing 2" different sums of positive reals, which is hardly feasible
in practice. By contrast, a more efficient strategy for computing the same minimum is to compare
(negative-log-)probabilities piece after piece, that is, to compute:

min {20,1, 21,1} + -+ min {Zo,n, zl,n}.

In this case we are computing n mins and summing n reals. Moreover, if we keep track, each time
we compute a min, of the value 6; € {0, 1} producing the minimum, at the end of the computation
we even obtain the most likely trajectories 6 € {0, 1}".

This simple example illustrates the idea behind the already mentioned Viterbi algorithm. Both
this algorithm and the sum-product algorithm for Bayesian networks can be seen as instances of a
general "distributive law" algorithm [2]. Very roughly, the algorithm exploits the remark that in
occurrences of the distributive law of (semi)rings like e.g. (x+y) - (z+w) = xz+xw +yz + yw there
are, often, less operations to perform to evaluate the left-hand term, compared to the right-hand.
So, whenever one is asked to evaluate a possibly too large sum of monomials, it is wise to try to use
distributivity from right to left as much as possible, so as to express this sum as a product of simpler
polynomials. In the case above, we reduced the problem of computing a min across 2" (tropical)
monomials g := zg, 1 + - - - + 2g, » to that of computing the sum (indeed, the tropical product) of n
polynomials m; := min{zo;, z1,;}.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:10 Davide Barbarossa and Paolo Pistone

Let us write now the term M, in PCF(X), by replacing probabilities with formal parameters,
M, = (Ax.x ®x, x)(Ax.x &x, x) ... (Ax.x &x, x)1. Then the distributive law argument as above
suggests moving from considering all 2" trajectories and look instead at the tropical product:

min{X;, X;} + - - - + min{X,, X, } (6)

But this time, since the Xj,)7, are not reals but just formal variables, it is not clear how to obtain a
tropical polynomial from it other than by applying distributivity in wrong sense, that is, from left to
right, thus getting back to an exponentially large min.

As we discuss through Sections 6 and 7, this is the point where tropical geometry comes to rescue
us. In Section 6 we illustrate how we manipulate the Newton polytope, a n-dimension polyhedron
that is an invariant of tropical polynomials, in order to extract a not too large polynomial from a
sum like (6) and, more generally, to compute the tropical product of polynomials in an efficient
way. Then, in Section 7, we will exploit this method to design an intersection type system Py, that
enumerates the most likely trajectories of PCF()Z) programs: intuitively, type derivations select the
most likely trajectories by applying our tropical version of the Viterbi algorithm recursively on the
structure of the program. This will enable us to explore, in polynomial time, a space of trajectories
of size exponential in the size of the program, providing a significant speed-up to the search for
most-likely reductions.

4 Parametric Weighted Relational Semantics

In this section we introduce a semantics for PCF(X)-programs given in terms of formal power series
whose variables include X. This semantics is a parameterized version of the weighted relational
semantics from [35]. While the presentation of this semantics requires us to combine algebraic and
categorical language, the key points to look at for the following are equations (7), (8) and (9), which
show how the formal power series in the semantics are related to the probabilities of the execution
paths of PCF()?)-programs, as well as the fundamental observation, in Subsection 4.4, that distinct
formal power series may induce the same (tropical) analytic function.

4.1 Formal Power Series

In the following, by semiring we mean commutative and with units 0 and 1. A semiring is continuous
if it is ordered (compatible with + and -) and (among other properties) it admits infinite sums.
We will consider the following continuous semirings (cf. [35]): {0, 1} with Boolean addition and
multiplication, N with standard addition and multiplication, R‘;’O with standard addition and
multiplication, and T, the tropical semiring (also noted L, cf. [6]), corresponding to RS, with reversed
order, with min as + and addition as -.

We indicate multisets p € !X =¥ — N as formal monomials, which allows us to retain standard
notations for polynomials/power series. For instance, the multiset i € {0, 1, 2} with p(0) = 2, u(1) =
1, #(2) = 0 will be denoted as 0?1 (or 0212°). Often, for clarity, we introduce a set x5 of #3 fresh
formal variables x,, one for each a € X, and we denote y € !X by the formal monomial [] ¢ x4 (a),
also denoted x*. For instance, 0°1 becomes the standard x7x; (or x2x;xY).

Let X be a set and Q a semiring. We call Q{=} the set of functions !X — Q, and its elements are
called formal power series (fps, for short) over Q with (commuting) variables the elements of 2. Given
s € Qf=}, the image s, € Q of y €!3 is called the coefficient of s at y and supp(s) :=!= —s~'0 is
called the support supp(s) of s. A fps s is all-one when all coefficients s, are either 0 or 1. When X
is finite and the support is finite, s is a formal polynomial. We let Q{3} C Q{2 } indicate the set
of formal polynomials. As usual, we visualize a fps s € Q{Z} as the formal sum s = X ¢\5 s,x",

e.g. s = S + Sg21Xox71 + $102%0x> € Qf{0,1}}. If ¥ = %y +--- + 3, then Q{Z} is canonically

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:11

isomorphic to the set of functions !¥; X ---X!%,, — Q, which we call Q{X,,---,2,}, whose
elements can be visualized as formal power series with multiple sets xx,, ..., x5, of variables.
The notations introduced above are implicitly compatible with the fact that Q{>} is a commu-
tative monoid with pointwise addition, with 0 being the fps >, 0x*. In fact, Q{2} is a semiring
with multiplication given by the usual Cauchy’s formula: (ss’),, := X 54y Sps; (this is a sum in Q

and exists because it is finite, since y is), i.e. ss’ =), ol sps,’7 xP*".The 1 for this multiplication is the

polynomial 1 with our notation, i.e. 1x!!. Polynomials form a sub-semiring for this structure. If
Q is continuous, Q{2 } is also continuous with respect to the pointwise partial order (the bottom
element is 0 and supremas are pointwise). The evaluation map at q € Q% is the continuous semiring
homomorphism Q{>} — Q sending }, s,x* to 3, s,q", where ¢ = []4e5 qZ(a) € 0.

Any continuous semiring homomorphism Q — Q’ lifts to a continuous semiring homomorphism
O{=} — Q’{=} by acting on the coefficients. Remark that sum, products, evaluation map and
lifts of homomorphisms above, are all compatible with the bijection Q{Z} ~ Q{>,---,2,} and
so they are compatible with the multiple variables notation; for example, the evaluation map at
(q1,...,qn) € Q™ X --- x Q* would now go from Q{=y,---,%,} to Q. Also, remark that for
Q=0{Z}, atpss € Q{X} = (Q’{Z}){X} is the same data as a fps s € Q' {Z, X}

We have the following folklore result (proven in the extended version [7]), where for any
continuous semiring Q, g € Q and n € N*, we write nq :=), g in Q.

ProrosITION 4.1. N* {3} is the free continuous commutative semiring on a finite set >. For any
continuous commutative semiring Q and q € Q%, the unique map realizing the universal property is
evg : N3} — Q, defined by evy(s) == X, suq".

For a given continuous semiring Q, the category QRel [35] has sets as objects and matrices
QXY as arrows X — Y. The category QRel, is the coKleisli category of QRel wrt the multiset
comonad !, so its arrows X — Y are matrices in QIX XY QRel, is cartesian closed, with product
X +Y, terminal object 1 = {x} and exponential !X X Y. Observe that sets in QRel, play the role
of indices, and a matrix t € Q**Y is the same data as a Y-indexed family of formal power series
with commuting variables in X, namely t = (X, 1x tuyx*)yey € QX }Y. This identification is
compatible with units and compositions (and linearity): from now on, for us QRel; has sets as object
and Q{X}" as homsets X — Y.

Lastly, notice that for any continuous semiring homomorphism 6 : Q — Q’, the induced one
O{=} — Q’{=} yields a (cartesian closed) identity-on-objects functor Fy : QRel; — Q’Rel,.

4.2 Interpreting (Probabilistic) PCF-Programs as Formal Power Series

Before introducing the interpretation of PCF()?)-typing derivations, let us recall the interpretation
[-]€ of standard PCF in the category QRel,, for any continuous semiring Q [35]. Actually, [35]
introduces a language PCFQ with weighted terms q - M, for q is an element of Q, and a generic choice
operator M or N, and it is shown that, for any Q, PCFQ can always be interpreted inside QRel,.
The basic types Bool, N are interpreted by the sets {0, 1} and N, respectively, and arrow types
A — B are interpreted as ![A] X [B]. A derivation of xy : Ay, ...,x, : A, + M : Bis interpreted as a
fps in Q{[A1], ..., [Ax]}[P], ie. a [B]-family of fps with variables in [A;],. .., [A,]. For instance,
a closed program M : Bool is interpreted as a fps in Q{0} (%} ~ Q{®!} in other words, by two
elements' [M]o, [M]; € Q. Weighted and choice terms are interpreted via [q - M] = q - [M] and
[M or N] = [M] + [N].

One obtains in this way an interpretation of usual probabilistic PCF [21] (pPCF for short) in
R Rel,, translating it into PCF™> via M @, N := p- M or (1 - p) - N. In fact, this interpretation

1As common, we simply write [T + M : A] or even just [M], but we really mean [x] for 7 a given typing derivation for M.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:12 Davide Barbarossa and Paolo Pistone

precisely captures the probabilistic execution of closed terms [35]: the 1nterpretat10n [M]® €

(RS,){*!} of a program M : Bool consists in two real numbers [[M]]O =0 [[M]]l , describing the
probability that M reduces to i = 0, 1 respectlvely

[M], %o - =PM —» i) = Z p (where M L i indicates a reduction of probability p). (7)

One also obtains an 1nterpretat10n of pPCF in TRel, by taking negative log-probabilities —Inp € T
in place of p, thatis, M @, N := (= Inp) - M or (= In(1 - p)) - N. Since or is now interpreted by the
min operation, this interpretation describes the negative log-probability of a most likely reduction:

IMIT =inf{-Inp | M5 i} =—Insup {p | M5 i}. ®)

Example 4.2. For the closed pPCF term M = 18, (16, 1), we have [[M]]]f‘:" = p+p(1-p)+(1-p)? =

1, i.e. the sum of the probabilities of all trajectories leading to 1, and [[Mﬂqlr =min{z,z+w,2w} =

min{z, 2w}, where z = —Inp,w = —In(1 — p), yielding e.g. - In2 whenp =1-p = %

4.3 Interpreting PCF()?)-Programs as Formal Power Series

We now show how to interpret PCF(X) inside any category ORel,. In fact, we interpret it in a “free
way”, factorizing any such interpretation. Let X be the set {X1, X1, ..., Xy, X, }. We can translate
PCF(X) to PCEY" %} via M@y, N := X;-M or X; - N, and [_]""" ¥} gives then an interpretation of
PCF()?) inside (N® {X})Rel,. We call it the parametric interpretation and note it [_]*1Xn. That is,
[Tk M APO%r e (N0 X X X DATIH L =N X0, X, L X, X, [TTH L. For
eg n=1,itisa [A]-family of fps 3 ,(3; ; sijﬂXi)_(j)x” =Xiju s,vj#X’ij” (i, j e N,p e ![T]).
Example 4.3. The parametric interpretation of the term M = 1®&x (1®x 1) : Bool (the parametrlza—
tion of the one in Example 4.2) consists in two fps HM]] [[M]]X X e N {X, X}, namely [M]¥ 0
and [M]]f’y = X + XX + X, which represent the (weights of the) possible reductions.

Directly from [35, Theorem V.6], we get that for a closed term M of type e.g. Bool, and i € {0, 1},
wXn 7 A vity in3In
M = ZZan A HXIXY . XX)

where #(7,) is the number of reductions to i of weight X il)_(h D ¢ i”ijn

Example 4.4. Remember M; = Y(/tx 1®x x) Bool from the previous section. Its parametric
interpretation yields two fps [M;[X* 0 [[Ml]] X where [M,]X% o =0,as M, cannot reduce to 0, and
[M; i(’X = ZHXYH describes the weights p ~ n of the infinitely many trajectories M, 5.

The parametric interpretation is indeed a parametrisation of the semantics in [35]: by Propo-

sition 4.1, any choice ¢ € Q¥ of actual values of parameters in a Q, canonically induces an
interpretation of PCF(X) inside QRel, via the functor Fe,, : (N*{X})Rel; — QRel,. One easily

checks that, if [X 1’;; € (RT,)* then the produced interpretation of a term M of PCF (X) coin-
cides with the one of the PCFR>0-term M [X = px, X = pxl. Similarly, if 7 € TX associates X,-,Z—
with negative log-probabilities — In p;, — In(1 — p;), the produced interpretation of PCF()_(>) terms
coincides with the one of the corresponding PCF" -terms.

Example 4.5. For M from Example 4.3, choosing the values p, 1 — p € R for X, X turns the fps
IM]2X = X + XX +X" into the real number [[M]]]?ZO =p+p(1-p)+ (1 - p) Evaluating X, X as
—Inp,—In(1-p) € T turns it into [M]T = min{-Inp,—2In(1 — p)} (cf. Example 4.2)..

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:13

Example 4.6. Consider Ms from Example 4.4; choosing X,X as p,1 —p € RS, turns the fps
[Mz]]i(’x =¥, XX into [[Mz]]lsz" =y, p(1-p)* = % (if p # 0). Evaluating them as — In p, — In(1-
p) € T turns it into [M]] = inf,{-Inp — nln(1-p)} = —Inp.

4.4 Tropical Analytic Functions

By evaluating at points, formal power series define analytic functions via the map (_)' : Q{>} —
[Q* — Q], where s'(q) evaluates s at g, i.e. s'(q) = 2ue 1x Suq"'. The central example we consider
is the case of the analytic functions for Q = T:

Definition 4.7. Let 3 have n elements. The functions T" — T of shape s', for a fps s € T{>}, are
called tropical analytic functions (taf for short, aka tropical power series) [6, 43]. Concretely,

! .
s(x1,...,x,) = iInf {s,+u-x
(x1 n) HE!E{H H }

with - x := ¥/, p(i)x;. When s is a formal polynomial, the inf above is a min and s' is then called
a tropical polynomial function. These are precisely the piecewise linear functions at the heart of
tropical geometry, as we discuss in Section 6.

The map (_)' from fps to the corresponding analytic function is not, in general, injective. This
means that different formal power series may well induce the same analytic function. Notably,
injectivity fails for Q = T, as the following example shows.

Example 4.8. Let Q =T, = {«}. Forafixedp € T,lett := 3, px" € T{x} and s := p € T{x}.
Then t # s but ' = s'. In fact '(q) = p + inf, ng = p = s'(q) forall g € T.

As it will be seen since the next section, it is precisely this mismatch between tropical power series
and the corresponding analytic functions that enables a combinatorial and efficient exploration of
the most likely behaviour of probabilistic programs.

REMARK 4.1. The considerations above could be rephrased by considering a category QAn whose
objects are sets and the homset from 3 to Y is QAn(X,Y), the set of functionss' : Q¥ — QY defined
bys'(q)y = e 1x Suyq", for some Y -indexed family s € Q{=} of fps.

Via the map (_)', any programT + M : A yields then a function [M]' : QI'l — QI4], and one may
ask what is the status of such interpretation. In the extended version [7] it is shown that (_)' turns
the exponential of TRel, into a weak exponential in TAn (cf. [40]), so that the interpretation []'
produces a non-extensional model ofPCF()?), that is, one that satisfies the f-rule but not the n-rule.

5 The Tropical Degree

Suppose M is a probabilistic algorithm that iterates a given protocol until a certain condition is
satisfied, and suppose that the computation of M ends after n iterations producing the value V.
As we observed in Section 3, we can expect that the probability of producing V after no less than
n steps does not increase when n is large enough. In this section we show that, in PCF(X), this
intuition is correct and reflects a general phenomenon captured by the tropical semantics.

To state our general result, we first show how to associate, canonically, a discrete power series
(i.e. with coefficients in N*°) with a taf called the tropicalization of the power series.

The inclusion : € Q{2 }* that sends any element X € X onto itself induces the homomorphism
ev, : N®{3} — Q{=}. If Q is an idempotent semiring, one can check that ev, turns all 0 coefficients
into 0 € Q and all coefficients n # 0 onto 1 € Q. That is, it gives the characteristic series of
the support: ev,(s) = X equpp(s) X'- Composed with (=), this yields a map ev} : N°{z}¥ —
QAn(Z,Y). For Q := T, which is idempotent since + = inf, the above lines yield the following:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:14 Davide Barbarossa and Paolo Pistone

Definition 5.1 (tropicalization). Let ¥ a finite set. The homomorphism ev, : N*{Z} — T{>} is
called t. Remark that, in terms of real numbers, t(s) = 2, cqupp(s) 0x* (the other coefficients, i.e.
the t(s), for ¢ supp(s), being +c0). We call t =ev : N*{3}¥ — [T> — TY] the tropicalization
map. For s € N®{>}", the tropicalization t's : T> — TY of s is the taf concretely given by:

t!s(x)y = inf p-x= t!sy(x).
HEsupp(sy)

Example 5.2. Lets € N°{X,X}. Then t's : T? — Tis t's(X 1= x1, X := x3) = inf e qupp(s) #(X) -
x1 + p(X) - x,. For instance, t's(X := 0,X := +00) = inf cqupp(s) {u(X) - co}. It is immediate to see
that this value is 0 if there is yz such that s, # 0 and p()_() = 0, while it is +oo otherwise. For instance,
for M = 1 @x 0, we have t'[M]; = X € N*{X, X}, and t' [M]1(X = 0,X := +00) = 0. Similarly,

= X
t'[M]o(X := 0,X := +00) = +c0. The first corresponds to the presence of the reduction M - 1,

the second to the absence of reduction M 2 0. In fact, the choice X := 0, X := +co corresponds to
choosing the left side of a probabilistic choice with probability 1 (so 0 for the right side), and t'[M]};
returns thus negative log-probabilities when computed on negative log-probabilities.

The situation of the previous example is not a coincidence. In fact, via tropicalisation, a program
M : Bool is turned into two taf t'[M]); : TX — T which compute the negative log-probability of most
likely reductions of M, as the following proposition shows. This is therefore a “parametrization”
(allowing all choices of probabilities) of [6, Corollary 10] or [35, Theorem V.6].

PROPOSITION 5.3. Given M : Bool, let p € [0,1]* any assignment of probabilities p to the parame-
ters. Then (remark that M[X := px| is a PCA%!l-term)

! - q .
E M) (X = = Inpx, X = —~Inpg) = —In sup {q | M[X := px] - i}.
The negative log-probabilities above are computed as an inf across all trajectories leading to i.

Our goal is now to show that, independently of the parameters, such an inf is always found within a
finite set of trajectories (and is, therefore, a min). The key result to get there is the following:

PROPOSITION 5.4. Letk € N and {s, | n € N} C N*. Then there exists a finite set S C N¥ such
that s, < 400 foralln € S and, for all x € T", inf,, cjx {nx + sp} = minpes{nx + s, }.

Proor. Fix the well-founded order m < n on N* by saying that m; < n; forall 1 < i < k and
there is at least one 1 < j < k such that m; < n;. We claim that we canlet S := {n € Nk |
Sn < 400 and for allm < n one hass,, > s,}. Indeed, if S is infinite then one can easily see, using
Konig’s Lemma, that there is a chain my < m; < --- C S. But by definition of S this gives a
chain s,;, > sy, > -+ € N, which is absurd. We have thus shown that S is finite. For the claimed
equation, Wlog S # 0 (otherwise on the one hand min := +c0, and on the other hand one can easily
see, by induction on <, that inf = +00). Now fix x € T". We show by induction on n wrt <, that
Vn € NX, 3m € S such that s, + mx < s, + nx. Notice that this proves the desired equation.

Case n = 0: Wlog n ¢ S. By definition of S, s,, = +co0 and so any m € S # 0 works.

Case n>0: Wlog n ¢ S. By definition of S, we have two cases: either s, = +o0o, which is done as
above. Or there is n’ < n with s,y < s,. Butthens,, +n'x <s,+n'x<s,+(n—n')x+n'x = s, + nx.
Ifn" €S, takem:=n’".Ifn" ¢ S, take the m € S with s, + mx < s,y + n’x given by the [Honn’. O

REMARK 5.1 (NOT ALL TAF ARE POLYNOMIALS). An essential ingredient in the (proof of the) result
above is that of considering fps with coefficients in a discrete set (like N). In general, a fps with
coefficients in T needs not be equivalent to a polynomial: consider the fpss = Y en Zi,,x” € T{x};
the corresponding tropical analytic function s' : T — T is not a polynomial function, since s'(0) =
inf,{n-0+1/2"} =0 is an inf that cannot be reduced to a min.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:15

COROLLARY 5.5. For all terms M : Bool” — N (i.e. Bool — --- — Bool — N) ofPCF()?)and
i € N there is an all-one polynomial s € T{X U {0,1}"} with t'[M]; = s' and supp(s) C supp([M];).

Proor. We have [M]; € N*{Z}, for T := (X1, X1,..., X Xic} U {0,1}". Then we can identify
1%~ N2k+2" Let sy = 0 if y € supp([M];) and := +co otherwise. Then Proposition 5.4 gives a finite
S C!¥ such that t'[M];(x) = inf esupp(m]i) (k- %} = inf e {p - x +5,} = minges{p-x} = s'(x), for
the polynomial s := 3 s lqyxg € T{Z}. Moreover, remark that supp(s) = S. Then, for u € supp(s),
from Proposition 5.4, we have s, < +00, so y1 € supp([M];) by definition of s,,. |

Intuitively, the polynomial s takes into account only a finite number of the trajectories of M. Yet,
the result above shows that the sup negative-log-probability across all trajectories is always found
within the finite set S selected by s (and is, therefore, a max). This leads to the following:

Definition 5.6. Let M : Bool” — N in PCF()?). For i € N, the tropical degree d;(M) of M at i is the
minimum degree of an all-one polynomial s € T{X} with t'[M]; = s' and supp(s) € supp([M];).

The tropical degree expresses the fact that the sup of the probabilities of the execution paths
of M to i can be obtained by only looking at a finite number of execution paths whose degree is
at most d;(M). For example, let us expand the definition above for a closed term M : Bool with
parameters X, X and let, say, i = 0. Remember that [[M]]é(= Xijen (i, j)Xi)_(J, with #(i, j) the
number of reductions to 0 of weight X ix’, Remembering Proposition 5.3 too, by (M) is the smallest
d € N such that there is a finite S C N? with

1. max(;jjesi+j=d,
2. for all (i, j) € S there is a reduction M-»0 of weight xix’,
3. for all p € [0, 1], the sup of all probabilities P across any reduction M[X := p] 5 0 equals the

P))
max across the reductions chosen in S : sup{P|M[X := p] - 0} = max(; j)es p'(1-p)’.
For example, one can easily see that the term M3 from Section 3 satisfies (M) = 1.

Example 5.7. Let M : Bool with parameters X, X. Suppose that M - i, for a fixed i € {0,1}. Let
us show that d;(i ®x (M @x Q)) = 1, where Q := YI : Bool is non-terminating. This means showing
that 1 is the smallest d € N for which there is a finite S C N? satisfying 1), 2), 3) from above. Observe

x0x"
that d cannot be 0, since there is no reduction i ®x (M ®&x Q) —» i. Let us show that d = 1 satisfies
all the required properties: the point is to guess the right finite set of reductions of maximal degree

1. Take S = {[;io]} C N2 ~I{X, X}, i.e. select the reduction i ®x (M &x Q) % i. This reduction

exists, so 1) and 2) are satisfied. For 3), we need to show that the selected set maximises the sup of
all the possible probabilities of all the possible reductions. Since Q does not terminate, the possible

! xix’
reductions to i are exactly those of weight either X or X #1%7™ for some i, j € Nsuchthat M - i.

X
It is clear then that, for any choice of p € [0, 1], the reduction corresponding to i ®x (M &x Q) —» i
is the one with maximum weight.

Example 5.8. This example shows how the tropical degree is sensible to the number of parameters.
Let M : Bool, now with parameters X1, X1, X5, Xs. Suppose that M —» i, for a fixed i € {0, 1}. Let us
show that d; (i ®x, (M®x, Q)) > 2.Itis easy, arguing as before, to see that the tropical degree cannot
be 0. But now, contrarily to the above, we can also exclude it to be 1. In this case the reductions

i i—i XX X x]
to i are either that of weight Xj, or those of weight XI“XiI XéZHXf, forM ' > i. Now,
while the only possible choice of a set S of reductions of maximal degree 1, is the one of weight Xj,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:16 Davide Barbarossa and Paolo Pistone

this choice does not maximises all the possible probabilities, i.e. it does not satisfy 3). For example,
assigning X3, X, with, respectively, probabilities (p1, p2) € [0, 1]% such that p; < % and p; > 2p; (for

X X, P’
example, p; = i and p; = %), one can see that a reduction i ®x, (M @®x, Q) S M Dx, Q I M>i,

with P’ large enough, might yield a probability (1 — p1)p2P’ > p1, thus violating 3).
Beyond these relatively simple cases, the general problem of finding the tropical degree of a
PCF(X) program is not decidable (and indeed the proof of Corollary 5.5 is non-constructive).

THEOREM 5.9. Both the problems of input a number d € N and a term M : Bool of PCF(Xj, ..., X})
with k > 2, and of respective output “yes” if 0;(M) < d and “no” otherwise, and “yes” if 0;(M) = d
and “no” otherwise, are not RE, and H(l)—hard

Proor. We reduce the complementary of the halting problem (which is not RE and is IT%-
complete) to Problem 1 and to Problem 2. Given in input a closed M : Bool of PCF(X), take X; # X
(does not matter whether they belong to X or not) and let M:=i ®x, (M®x, Q). If M is normalisable
to i then, by arguing similarly to Example 5.8, we see that d;(M) > 2. If M is not normalisable to
i then, since Q also is not normalisable to i, we have HM]], = X; and so d;(M) = 1. Summing up,
bi(ﬁ) = 1iff M is not normalisable to i iff d; (]\7[) < 2. Hence an oracle semideciding either problem
1 or 2 allows to semidecide the non-normalisability of M. O

The previous examples show that computing (or even estimating) the tropical degree by hand is
a subtle task and, in general, exact values or even upper-estimations are not mechanisable. This
poses obvious limitations to the what can be achieved in general, algorithmically. However, in
the next Sections we will show that it is still possible to design an algorithm that progressively
computes estimations of the tropical degree eventually stabilizing onto the correct value d;(M).

6 Convex Geometry and Newton Polytopes

As already mentioned, in this and the next section, by combining the toolbox of tropical geometry
with the one of programming language theory, we define an efficient procedure to solve the
inference problems (I1) and (I2) for a term M : Bool/N, that is, to compute the maximum a posteriori
(log)probabilities of producing a given value, say 1, and to produce a most likely explanation for it.

While the finiteness of the tropical degree ensures that we may restrict ourselves to explore only
a finite set of reductions S, the size of S may still be exponentially large (cf. Section 3.2).

In this section we show that one can compute some polynomially bounded subset S” C S that
still contains enough trajectories to track the most likely ones. This set S’ is obtained by associating
a program (in fact, its associated fps) with a polytope, called the minimal Newton polytope, which
is a variant of the well-known Newton polytope of a polynomial. The same method will then be
used to design an algorithm, similar to the Viterbi algorithm, to compute the tropical product of
polynomials in an efficient way. This algorithm will be the key ingredient, in the next section, to
design a compositional procedure to track the most likely trajectories of a PCF(X) -program.

6.1 The Newton Polytope

In this subsection we recall the standard definition of the Newton polytope of a polynomial. Let
us fix some all-one polynomial s = 3, u € R{Z} in n variables, where R := R U {+co}. This is the
standard tropical semiring in which tropical algebraic geometry is usually carried on. It is well-
known that the piece-wise linear function f; : R” — R defined by s by f;(x) = min,egupp(s) {4 - X}
can be characterized via two, dual, geometric objects:
o the tropical variety y(f;), i.e. the set of all tropical roots of s, i.e. the x € R" such that the
minimum f;(x) is reached by at least two monomials (i.e., f; is not differentiable at x);

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages

(a) Geometric proof of the "old
freshman dream” (X1+Xp+X3)2 =
X12 + X22 + X?. The triangle is
the convex hull of the points cor-
responding to the monomials in
(X1 + X2 + X3)2. The triangle is
spanned by the three vertices cor-
responding to XZ,XZZ,X32.

U1

-

W

(b) Hlustration of NPpin(s) C
NP(s), for s given in Example
6.7: NP(s) is the convex hull of
01,...,05. NPpin(s), coloured in
grey, is the convex hull of the ver-
tices v1,...,04. Notice that vs ¢
NPpin(s), as it is not minimal
(e.g. v3 < vs).

33:17

(c) For the term M, of Exam-
ple 6.10, both NPpi,(Ms) and
NP(My) are given by the segment
o. Its vertices (0, 3), (3,0) contain,
by Proposition 6.5, the weights of
at least one most likely reduction
of My (no matter how probabilities
are assigned to the parameter X).

Fi

g. 3. lllustrations of the Newton polytope.

e the Newton polytope NP(s), i.e. the convex hull in RY | of the points u € N in supp(s).

y(fs) and NP(s) describe two polyhedra in R” with dual graphs (see [36]), and any tropical
root a € y(fs) of s uniquely identifies a facet F,, of NP(s): a individuates k > 2 monomials
Uy pk € N?suchthat gy -a=--- = pi-a=:beR,so that ais, by construction, normal to the
hyperplane H, of R" of equation (in z) a- z = b and H, is the supporting hyperplane of a unique
facet F, of NP(s), namely the one containing the points 1, . . ., j.

A crucial remark now is that, even if we defined NP(s) as the convex hull of the possibly very
large set of points supp(s), it is uniquely determined by the set Vert(NP(s)) C supp(s) € NP(s)
of its vertices which is, in general, much smaller and in average efficiently computable:

THEOREM 6.1. Lets € R{xy,...,xn}. Then then #Vert(NP(s)) = O(d?"~1) ([45, 46]), where d is
the degree of s, and Vert(NP(s)) can be computed with a randomised algorithm in expected time
O(Is|L21) (8, p. 256 (line 4 from the bottom)]), where |s| := #supp(s).

A consequence of all this discussion is that, for a polynomial s of degree d, we can always find a
polynomial s” formed by a subset (namely, Vert(NP(s))) of the monomials of s of size polynomial
in d such that NP(s) = NP(s") and, crucially, the functions f; and fy coincide. Indeed:

LEMMA 6.2. Lets =3,y € R{Z}. Then minequpp(s) L4 - X} = mingeverr(Np(s)) {4 - X}

Proor. This is an immediate consequence of a well-known fact in linear optimisation (cfr. [7]):
for a polytope P, the inf on P of a linear function y - x is found on the vertices of P. O

Example 6.3. Consider the polynomial s = 3, ;1= XfX;Xé‘ . Then NP(s), illustrated in gray in
Fig. 3a, is the convex hull of all the points (i, j, k) € N® such that i + j+k = 2. NP(s) is generated by
its vertices, which are the three bold points (2, 0,0), (0,2, 0), (0,0, 2) in the figure. We deduce that
fs coincides with fy, where s’ = X? + X2 + XZ. What we have just described is in fact a geometric
proof of the "old freshman dream" (x; + x; + x3)* = x? + xZ + x2 for tropical polynomial functions.

6.2 The Minimal Newton Polytope

We now address the following question, indeed a finitary variant of the problem discussed in
Section 5: given some very large, although finite, polynomial s € T{X}, can we find a sufficiently
smaller, and somehow minimal, all-one polynomial s” such that t's = (s")'?

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:18 Davide Barbarossa and Paolo Pistone

We have seen that the Newton polytope NP(s) and its small number of vertices (Theorem 6.1)
precisely serves this purpose... but for the fact that NP(s) characterizes the function R* — R
defined by tropical polynomials over the tropical semiring R U {+oc0}, while we are interested in the
function t's : T" — T defined by tropical polynomials s over the tropical semiring T (with carrier
set [0, +00]). To overcome this mismatch, we introduce the following:

Definition 6.4. The minimal Newton Polytope N Pmin(s) of s = 3, s,p € T{Z} is the convex hull
in RY) of the following set, which is easily seen to be its set of vertices and non-empty:

Vert(NPpin(s)) = {y € N" | u minimal element of (Vert(NP(s)), <)} C supp(s),

where < is the pointwise (well-founded) order. We also set smin = 2 jevert(NPun(s)) ¥ € T{Z}.

The polytope NPpin(s) precisely captures the behavior of the function t's(x) : T" — T: the
latter coincides with the min computed over the monomials in NPp;, (s):

PROPOSITION 6.5. Let s € T{X}. Then mingcvert(NP(s)) {} * X} = MiNyeVert(NPun(s)) L4 * X} In
particular, since the latter is t!smm(x), it follows from Lemma 6.2 that t!s(x) = t’smm(x).

Proor. Fix x € R™. The (<) is trivial. For (=), we show, by induction on u € (Vert(NP(s)), <),
that for all p € Vert(NP(s)), there is p € Vert(NPyin(s)) such that p - x < p - x. If y is minimal,
then by definition y € Vert(NPp;,(s)), so we are done. If y is not, there is v € Vert(NP(s)) with
v < p. By IH there is p € Vert(NPpin(s)) such that p - x < v-x < u- x, and we are done. O

The following shows that the set of vertices of NP, (s) can be computed fast wrt s. Remembering
that |s| is the cardinality #(supp(s)) of the support of s, we have:

THEOREM 6.6. Lets € T{X}. The set Vert(NPumin(s)) (i.e. Smin) can be computed with a randomised
algorithm in expected time O (n|s|™>{>m})

Proor. First, compute Vert(NP(s)). For each y € Vert(NP(s)), the minimality check for y can be
done in time n(#Vert(NP(s)) — 1) and, since we have #Vert(NP(s)) of them, we have an additional
time ~ n #Vert(NP(s))%. By Theorem 6.1, we can compute Vert(NP(s)) in expected time O(]s|LZ]).
Also #Vert(NP(s)) = O(s|), whence the total time O(|s|LZ1) + nO(|s]?) = O(n|s|mx{2n}), m|

Example 6.7. Let s = X2X3X2 4+ X3X2X2 + X, X, X3 + X3X3 + XIX3XE + XAX2X3 € TXy, X, X3}
Fig. 3b illustrates NP(s), the convex hull of the points v; = (2,3,2),02 = (3,2,2),03 = (1,1,3),04 =
(3,0,3),05 = (5,3,4),06 = (4,2,3), of which only vy, .. .,vs are vertices, as vs is convex combination
of v4, vs. vs is the only non minimal vertex, since e.g. v; < vs, s0 Vert(NPpin (s)) = {01, 02,03, 04}

REMARK 6.1. While the algorithm for NPy, (s) in Theorem 6.6 rests on a brute force minimality
check on NP(s) (still polynomial in d), a potential speed up may arise from geometric considerations.
In general, given a polytope P inR", any of its facets f lies, by definition, on its supporting hyperplane
Hy, and moreover P is all contained inside one of the two closed halfspaces H}', HJZ in which Hy divides
R"™. Call H;; the one containing P. Let us call f negatively oriented if the normal unit vector to Hy
towards H; has all strictly negative coordinates (in the canonical base). Intuitively, “sees the origin”.
Now, it can be easily proven (see [7]) that a vertex v belonging to some negatively oriented facet f of P
is always minimal. The example in Fig. 3b illustrates this fact, since in this case N Puyin(s) coincides
with the unique negatively oriented facet of NP(s). This suggests that, to compute the minimal vertices,
one could start by first selecting the negatively oriented facets, and restrict the brute force minimality
check to the remaining ones. However, the eventual speed up depends on the concrete representation of
a polytope in use in the algorithm, so we leave such investigations for future work.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:19

It is worth to rephrase and summarise what we got so far: given a PCF(Xj, ..., X;,) term M : N and
some fixed outcome i, the parametric interpretation gives rise to a fps [M]* € N*{X}. If the latter
is a polynomial, then we have (cfr. Definition 6.4) a minimal polynomial (t[[M}]iX)mm or, equivalently,
its Newton Polytope, call it NP.. (M). By Proposition 6.5, this polytope approximates the tropical
degree ;(M), in the sense that, for all probability assignment to the parameters of the program,
the vertices of NPr"n . (M) (i.e. the minimal monomials in [[M]]iX) contain (the monomial of) at least
one most likely reduction. This reads as t'[M]* = (' [M]¥)min, whence d;(M) < deg((t[M]*)min)-
Figure 3c illustrates this discussion for the term M, from Example 6.10 (where the situation is more
trivial: Dy (My) = deg([[Md]?g) = 3, because all reductions of My have degree 3).

But we can actually do the same even if the fps [[M]LX is not a polynomial (i.e. its support is
infinite): by arguing similarly to Proposition 5.4, one sees that the minimal monomials in its support
are still in finite number, therefore one still has a polynomial (t[[M]]iX)min or, equivalently, its Newton
Polytope, call it NP. . (M). Moreover, one can follow the same proof of Proposition 6.5 in order to
show that NP! . (M) still satisfies the exact same approximation property as in the finite case.

In conclusion, we can always associate M : N with a minimal Polytope NP . (M), i.e. a minimal
all-one polynomial (t{M]*)min € T{X} with ' [M]* = (t'[M]*)min and d;(M) < deg((t[M]7)min)-

Notice that this is not in contradiction with Theorem 5.9: the above upper-bound always holds,
but in general we can only hope to compute all the minimal monomials for finite interpretations.

6.3 The Viterbi-Newton Algorithm

Recall that, from the discussion around (6) in Section 3, tracking the most likely runs of an application
MN requires to be able to compute (tropical) products of polynomials efficiently. We will now use
the results from the previous subsection to define an algorithm VN to compute, given k polynomials
S1, ..., Sk, @ minimal polynomial s capturing the tropical product of the s;.

First observe that the number of monomials in sy . .. sg grows exponentially in k. For instance,
letting all s; be the same polynomial X; + - - - + X,, we have that s; ...s; = (X; +- - - + X,,)¥ contains
(”Z’:l) € O((n+k—1)*1) distinct monomials. However, we have seen (cf. Example 6.3) that in the
tropical setting we have (X + - - + X))~ = X{‘ +- -+ X*. Indeed, as we show below, a sufficiently
small set of monomials is enough to capture the polynomial function t' (]—If:1 Si).

The main idea behind the algorithm described below is to compute the product as an operation
performed directly over the minimal Newton polytopes NPuyin(s1), - - -, NPmin(sn), and producing
the minimal polytope NPpin(s1 ...s,) (this is reminiscent of the polytope algebra of [42]). The
fundamental remark is that the product of polynomes translates into the Minkowski sum of the
corresponding polytopes, defined as A+ B = {v +w | v € A, w € B} for two sets in R”. The set
Vert(A + B) can be computed in time O (nm), where n = |Vert(A)|, m = |Vert(B)|, cf. [16]. Using
the well-known fact that NP(s;s;) = NP(s;) + NP(s;), we can prove:

LEMMA 6.8. Let sy, sy € T{Z}. Vert(NPpin(s152)) = (Vert(NPpin(s1)) + Vert(NPupin(s2)))Jmin-

We now show the existence an algorithm (which we call VN - for “Viterbi+Newton”) to compute
the minimal polynomial (Hi—‘zl $i)min efficiently from (s1)min, - - -» (Sk)min-

THEOREM 6.9. Letk > 2, sq,...,8x € T{Z} be minimal (ie. such thats; = (s;)min), let d =
max; deg(s;) and n := #X. There is an algorithm VN(sy, . . ., sx) computing (Hle Si)min in (expected)
time O (nd*(2n=1) max{2n}y when n < k), and (deterministic) time O((1 + k)d*?"=1) (when n > k).
Moreover, (I1%, s;)min has O((kd)*"~') monomials.

Proor. We could directly compute the product Hilesi (in time O(d*"~1)), since Theorem 6.1
gives |s;| = O(d**™1)) and then extract its minimal Newton polytope, which gives, via Theorem

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:20 Davide Barbarossa and Paolo Pistone

6.6, the first bound. When n > k, a speed-up is obtained by using Lemma 6.8: since s; = (S;)min>
NP(s;) = NPpiy(s;) and the vertices of NP(s;) are precisely the terms of s;, so we can compute
in time O(d*?"~V) the Minkowski sum NP([];s;) = 3.; NP(s;) (which, again by Theorem 6.1,
has O((kd)?>"~1) terms) and then do a quadratic minimization. This gives the (deterministic) time
O(d*@=1 4 (kd)??n=1), leading to the claimed bound. O

Remark that t'(H{;l $))min(X) = le(s,-)min(x). By computing products via VN, once we fix the
number of variables, the size of (tropical) products like (6) grows polynomially in both d and k.

Example 6.10. Consider M5 = (Ax.x ®@x x)(Ax.x ®x x) ... (Ax.x ®x x)1 similar to My from

Section 3.2. Each of the 2" trajectories M 551 corresponds to a monomial X iX"™" and the sum
of all such monomials produces the polynomial (with the same support as) (X + X)". Observe
that, since all reductions to i have degree n, the tropical degree d;(M,) = n, and we can select all
the 2" reductions to witness this fact. But this tells nothing wrt the most likely reductions. By
contrast, by the old freshman dream (Example 6.3), the Newton polytope of (X + X)" only selects
the two monomials X", X " One can see that, for all assignment of X to probability p € [0, 1],
the probability of the most likely reductions is always found within the two selected ones (i.e.,
max/_, p'(1 — p)"~" = max{p", (1 — p)"}, as one can easily check). In other words, the Newton
Polytope (in fact, its minimal version) of (the parametric interpretation of) M,, drastically reduces
the search space for most likely reductions.

7 Tropical Intersection Type System

We now put all the work of the previous section in use for the analysis of probabilistic programs
of PCF(X): we introduce an intersection type system Py, that associates terms of PCF(X) with
minimal all-one polynomials describing their most-likely reductions. After proving soundness and
completeness of Py, wrt the parametric WRS semantics, we describe an algorithm that converges
onto the Newton polynomial, thus producing an answer to the inference tasks (I1) and (I12).

7.1 The Type System P,

Intersection type system have been largely used to capture the termination properties of higher-
order programs. Non-idempotent (n. i.) intersection type systems, inspired from linear logic, have
been shown to capture quantitative properties like e.g. the number of reduction steps [1, 11, 18]. In
a probabilistic setting, [22] have introduced a n. i. intersection type system P for probabilistic PCF
which precisely captures the probability that a program M : Bool reduces to, say, 1 in the following

sense: for each reduction M ﬁ) 1 one can construct a derivation of the form I—f, M : 1 so that
P(M > 1) = Z {w(r) | 7 is a derivation of +5 M : 1 of weight w(x) = p}. (10)

By replacing the positive real weights p € [0, 1] in the system P with the formal monomials of
PCF(X) one obtains, in a straightforward way, a type system that produces all the monomials p

. . . H . .
occurring in a reduction M - 1. In other words, the type system explores all possible reductions of
M and produces the associated monomial. This provides a way to fully reconstruct the parametric

Our goal, instead, is to design a type system that explores multiple reductions at once, excluding
those whose probability is dominated, so as to restrict to a finite set of most likely reductions.
The goal is thus to capture a finite polynomial corresponding to the tropicalization t'[M]Xt-Xn
(in accordance with Theorem 5.5). A natural idea is to consider multiple P-derivations in parallel.
Typically, while in the case of a choice M @, N a derivation in P chooses whether to look at M or

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:21

N (that is, it chooses between the two reducts of M @, N), in our system the derivation branches
so as to consider (and compare) both possible choices.

However, the feasibility of such a system is far from obvious: through reduction, even a term of
small size may give rise to an exponentially large number of trajectories, as shown in the example
below. Keeping track of all such trajectories through parallel branches in our type derivations can
quickly become intractable (even for a computer-assisted formalization).

As already explained, this is where we exploit the minimal Newton polytope: while the rules of P
produce the probability by progressively multiplying the monomials obtained at each previous step,
considering multiple P-derivations at once requires computing formal polynomials by repeatedly
multiplying other formal polynomials produced at previous steps. By using the results developed
in Section 6, we are able to keep the size of such polynomials under control.

Definition 7.1 (Pyop). The types of Py,p are defined by the grammara:=n e N | [q,...a] — a.
A context y is a function from variables to multisets of Pyop-types, all empty except finitely many.
We write it as a finite sequence of variable declarations x : y(x) such that y(y) = [] for all non-
declared y. Given contexts y, §, we indicate as y + J the context obtained by summing their image
variable-wise. A pre-judgement is an expression of the form

M:(yj v aj) s
and stands for a finite family of judgements y; -/ M : a;, where s; indicates a formal polynomial
in T{X}. A pre-judgement is a judgement when the pairs (y;, a;)je; are pairwise distinct and the
polynomials s; are minimal. Given a pre-judgement as above, we can always produce a judgement
M : merge <yj 5 aj>j€] by merging equal typings (e.g. turning (y * a | y ¥* a) into (y F*** a))
and minimizing each obtained polynomial s via VN(s). The rules of Py, are illustrated in Fig. 4.

Crucially, we design the rules so as to precisely keep track of the reductions selected by the
minimal Newton Polytope of a compound term, by combining those of its constituent.

Except for the rule (@), that introduces an empty family of judgements, each rule of Py, results
from a corresponding rule of P by extending it to families of judgements. The rules (n), (id), (S), (P),
(A) are self-explanatory: they correspond to rules that create no new parametric reduction. The
rules (ifz), (®), (@) and (Y) deserve some discussion. The rule (&) collects a family of typings of
M with polynomials s;, and a family of typings of N with polynomials s;., to produce a family of
typings of M &x N, with polynomials s; - X and s’ - X, that is successively merged. Observe that this
precisely corresponds to keeping track of the reductions selected by the minimal Newton Polytope
of M @x N, by combining those of M and N. The rule (ifz) works in a similar way, but uses VN(-)
also before merging, since it needs to compute the possibly non-trivial tropical products sy - t;
and s;4q - tj'.. The application rule (@) collects, on the one hand, a family of typing m; — b; of M
with polynomials s;, where m; = [m;1, ..., m;p,]; on the other hand, for each typing m; —o b;, and
each type m;; inside m;;, it collects a typing N : m;; with polynomials s; - The conclusion of the
rule computes minimal polynomials for the types b; by calling VN(s;, s, ..., s; Pi) to minimise the
tropical multiplication s; - [s7;. The rule (Y) works in a very similar way.

Example 7.2. In Fig. 5 we illustrate a family 7, of derivations for the term M; from Section 2.
M5 admits arbitrary long reductions, the first one being the most likely. 7y computes the weight
of the most likely derivation M; > 1; 7y compares the weights from all 7;, for i < n with the
weight of the n + 1th reduction, but ends up selecting in each case only the weight from 7, since
(X, XX ")mm = X. Hence, all 7, correctly compute the minimal polynomial, providing a correct
estimation of the tropical degree d;(M3) = 1 of Ms.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:22 Davide Barbarossa and Paolo Pistone

M: (y,- [m>_ M: <Yi e ni>A
o id n iel S iel P
M:0 X <x: [a;i] v ai> n: <}—1 n) such:(yi 1Si ni+1> pred M : <yl~ pSi ni+1>
iel {x} i€l iel
M: < FO 0 | yien FS D+ 1> N: <6~ ri > P: <5’. [’.>
Yo Yirt " eren P, J Gl jen if;
ifz
ifz(M, N, P) : merge <Y[) +8; VNG g |y + 8 RVNGL D) g >
J J lieLjeh+h
M: (Yi [ai>‘ N: <Yj kY aj>_ M: <yi,x tmy ES b,->
iel JjeJ ® i€l 1
M&x N : < s X | X > AxAM:< i S m~—0b~>
X merge \ i ai\yj k7o aj ieLje) Yi ' ier
M: <}’i FSi m; —o bi> N: <<5ij 55 mii> > M: <y,- i m; —o b,-> YM : <<§,-j 1St mij> >
iel jeliliel iel jeliliel

Y

MN : merge <y,~ +2;0ij VNG Sieosip,) bi> YM : merge (y,- +X; 6 VNG Siposip,) b,~>

i€l i€l

Fig. 4. Typing Rules of Piyop. In rules @ and Y, m; = [mj1,..., mjp,] and p; = Card(J;).

Example 7.3. In Fig. 6 we illustrate a derivation for the term M, from Section 3.2, choosing n = 2

and X; = X;. It computes the reduced polynomial X* +)_(3, thus correctly estimating d; (M;) = 3.

The number of families explored in parallel in a derivation is a parameter controlled by the
user. For example, in a term M &x N we can decide whether to explore both branches or only one,
and this choice affects the size of the derivation |x|, that is, the number of rules. Instead, the size
of the polynomials obtained through the derivation is not controlled by the user. Thanks to the
estimation from Theorem 6.9, though, their size remains polynomial in |7|. Indeed, the following
can be proved by induction on x:

PROPOSITION 7.4. Let it be a derivation of M : (I; v a;);jc;. Then max;{degs;} = O(|n]). As a
consequence, |s;| € O(|x|>"™1) foralli e I.

Given a derivation 7 of M : (+° i), by replacing, in each rule (ifz), (@) and (Y), the minimized
products (II;s;)min obtained by VN(sy, .. .,s,) with the full products II;s;, we obtain in the end a
larger polynomial, that we call traj’ (7). Using Lemma 6.8 one can easily check that:

PROPOSITION 7.5. For any derivation of M : (+° i), s = (traj (/7)) min.

Intuitively, the polynomial traj (1) tracks all reductions of M that 7 explored and out of which
it selected the most likely ones. This claim will be justified by the soundness theorem below. For
instance, consider Example 7.3, if we replace, in the derivation of Fig. 6, products computed by VN

by standard products, we obtain traj'(z) = };, =3 X i)_(j, while X? + X = (traj" (7)) min-

7.2 Soundness and Completeness of Py, for the Parametric WRS

Intuitively, a Pyop-derivation is an optimized way to collect multiple P-derivations, which, in
turn, encode the reductions of the underlying term. More precisely, for any choice of probabilities
p € [0,1]%, for any derivation of M : (I} +% a;);c1, for each i € I and for each monomial y1 in s;,
there is a derivation of I; H* M[X := p] : a; in P, where p* = HVeXpC(V) (cfr. Section 4.1) is the
probability of the reduction of M[X := p] (to some normal form) corresponding to u. This suggests
then that soundness and completeness can be lifted from P [22, Lemma 20 and Equation 11] to Pyp.

The fundamental ingredient is the notion of a Py,-derivation refining a PCF(X)-derivation.
First, given a simple type A, a Pyop-type a, a simple context I' and a Pyp-context y, we say that
(y, a) refines (T, A) whenever a € [A] (so e.g. 0, 1 refine Bool and m —o b refines A — B whenever

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:23

x:0 1:<+‘1> 1:<F11> x:(x:[l]k‘l)

xe>x1:<>-71> xﬂax]:(FYl‘x:[l]FXl) 0|m1
o S T4l
Jxx @y 1 :(Jw-o 1) Ax.xeaxr:<»?w-o 1| X 1] - 1) Y(xxex 1) : <w| J1>
YOxx@x 1) : < X 1> YOxx@x 1) : < X 1>

Fig. 5. Derivations from Example 7.2.

xifxilla <alv [l <a) x:(x:llal ot [a ~a) x:(xl0] =1 F [=1) xs(xe (0] 1] F (1] 1)

xeexx:<x:|[a|wanx*ﬂa\wa) xéexx:<x:[Illwllrx*ylllwl>)«(x:[l]k‘l))«(x:[l]?»‘l)

xx @y x: (X [[a] ~a] = [a] < a xax @y x: (KX [[1] = 1] —o [1] — 1 x@xx: (x:[1] X1
A XX [[a]] — [a] A X0 1 — (1] XX
Gxxax Dhvxexx: (8 [1] 1) rxoxxs (HF 1] 1)
(Ax.x B x) (Ax.x By x)Ax.x D x : < XOR) 1> 1 (M 1>

(ex @) (x & 1) (rx ox 01+ (HOF 1)

Fig. 6. Derivation from Example 7.3, where a = [1] — 1.

m € ![A] and b € [B]) and y(x) €![T(x)] for all x declared in T, and y(x) = [] otherwise. Now,
given a PCF()?)-derivation IT of ' + M : A and a Py,-derivation 7 of M : <yk Sk ak>k with
(v, a) refining (T, A), 7 refines IT when, intuitively, its rules match the corresponding rules in II:
for instance, if IT ends with the abstraction rule of conclusionT + M : A — B, & ends with the
rule (1) of conclusion M : {y; + M : m; —o b;)ie, where (y;, m; — b;) refines (I, A — B). Two
exceptions are the cast rule (which is skipped) and the Y-rule. For the latter, the intuition is that a
Pyop-derivation 77 for YM actually determines one possible finite unfolding of YM. More precisely,
must end with a cluster of h consecutive Y-rules of which the last one has premise of type [] —o b;.
By replacing each such (Y) with (@) one obtains then a Pyop-derivation unfold(x) in which YM
has been replaced by the unfolded term M®y (y is a fresh variable). Correspondingly, IT can also
be transformed into a PCF()? y-derivation unfold” (IT) of M"y by replacing the fixpoint rule with
a cluster of h application rules; we say that 7 refines IT when unfold(r) refines unfold” (IT). For
the definition to make sense, a transfinite induction is required, by treating the Y-rule as a w-rule.

By adapting the argument for P [22, Lemma 20], we obtain (by induction on a PCF (X)-derivation):

THEOREM 7.6 (SOUNDNESS OF Pyop WRT WRS). Let Il a PCF()?) -derivation of T + M : A and (y, a)
refining (T, A). For all Pyp-derivation w of M : (y +* a) that refines II, supp(s) C supp([[M]]?éa).

It follows that, in particular, the minimal polynomials produced by typing derivations for a closed
ground-type term M produce an over-approximation of the tropicalisation of M:

COROLLARY 7.7. Let I derive in PCF()?)I— M :N, n € N. For all 7 derivation in Pyop of M : (+° n)
that refines I1, we have t'[M],(q) < s'(q) for all ¢ € T?" (n being the number of parameters).

Proor. It follows from taking I' = 0, A = N in the soundness, which gives: for all n € N and
q € T2, t'[M]%(q) < inf{y- q | p € supp(s) for some w of M : (+* n}. |

In fact, we can say more: Py, captures at least the minimal part of the parametric WRS. Reasoning
in a similar way as for Theorem 7.6, one can show:

THEOREM 7.8 (COMPLETENESS OF Py, WRT MINIMAL WRS). Let IT be a PCF()Z Y-derivation of
T+ M : A and(y,a) refining (T, A). Forall u € supp([[M]]ﬁa)min there is a Pyqp-derivation w of
M : {y +* a) that refines I1 and with u € supp(s).

Notice that, together, Theorems 7.6 and 7.8 give the equality
t'[M]n(q) = inf{y - q | u € supp(s) for some 7w of M : {+* n)}, (11)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:24 Davide Barbarossa and Paolo Pistone

OSOVRSS,
; . 1 +1 ; j+1 j+1
@.‘Q P (K90 |k 1) R A N T AR (S M P A
020 © Proy s (PGl ™) o | VNGl of™))

(a) Bayesian Network. (b) Typing derivation mj41 for Pj41.

ifz

Fig. 7. Bayesian Network and typing derivation for Example 7.9.

showing that the taf interpreting M can be in principle approximated via larger and larger deriva-
tions, which we construct below. Actually, coherently with Corollary 5.5, we show in Theorem 7.11
that there is a single derivation reaching the inf, which is thus a (non computable, in general) min.

7.3 Constructing a Solution to Tasks (I1) and (12)

We now exploit the type system Py;op to design an algorithm that, by reconstructing the Newton
polynomial of a term, converges onto a correct solution to the inference tasks (I1) and (I2). Given
a PCF()?)—term M : Bool with parameters X and a chosen output value i € {0, 1}, the goal is
to produce in output a finite set selected_trajs'(M) of tuples (p, wy, S), where w, € {0,1}" is

a sequence describing a candidate most likely trajectory M L iand s C [0,+00]™ is the set of
(—log)-values of the parameters X that make 4 minimum across all 1 € selected_trajs’(M). The
algorithm is divided in two phases: the construction of a suitable Py,,-derivation of M : {(+° i), and
the extraction of the set selected_trajs'(M) from r, described in the following two subsections.

7.3.1 Constructing a Stable Derivation. The main idea for the construction of a derivation exploring
the reductions of M was already suggested in Example 7.2: we progressively make 7 grow so as to
explore more and more reductions, until the produced polynomial s stabilizes: anyhow the derivation
may still grow, the polynomial s does not change.

As a first simple example, suppose M is a closed first-order term built using only 0, 1, ®x and
ifz(—, —,—), so that its typing in PCF(X) only contains the type Bool. It is not difficult then to
construct, by induction on M, a derivation z : (+% 0| ' 1) that explores all trajectories of M
(i.e. for which supp(traj' (7)) = supp([M];)). Notice that the derivation has size linear in the size of
M, since the index sets I for any judgment can have at most two elements (the only two refinements
0, 1 of the type Bool). In this simplified setting, as illustrated in the example below, the construction
of s can then be seen as a parametric variant of the Viterbi algorithm.

Example 7.9. Consider closed terms Sy, Sl.l, ...,S8 :Bool,i =0,1,n > 0 and let P = P, : Bool,

where Py = Sy and Pj,; = ifz(Pj, Sé“, S{H). The term P : Bool encodes the graphical model in Fig. 7a.
This model has 2" trajectories leading to either S§, S7. There is a derivation 7, of P : (% 0 | % 1)
(of size linear in P) capturing all such trajectories, made of a chain of ifz-rules (the derivations

7j+1 for the terms P; are illustrated in Fig. 7b, supposing given derivations for S and the S{)- The
polynomials s, := s; and s; := s{' are constructed by choosing, at each step, the best way to expand

either sé or s{ with the monomials ul] , Ul] coming from either Sé or S{ .If the u; , 0; were scalars, this

would indeed correspond to computing a Viterbi sequence for the model in Fig. 7a.

While in the case above it was possible to generate a single derivation encompassing all tra-
jectories of the term, this is not possible in general, because the term may have infinitely many
trajectories, which is typically the case if the term contains a fixpoint. Another problem is that, if
the term has some higher-order applications PQ, the number of possible intersection types m — b
refining the type A — B of P is also infinite, since m € ![A]] may be arbitrarily long.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:25

This is why we construct our derivation incrementally. For two fixed parameters n, p € N, we
can always construct a derivation Jl';l’p (M) of M : (+° i) that collects all P-derivations of + M : i
in which the rule (Y) is used at most n times and, for all intersection types m — b, m has at most
p elements and does not contain atoms i > p. This corresponds to looking at reductions of M in
which fixpoints are unfolded at most n times and, and in each S-reduction (Ax.P)Q, the term Q may
be duplicated at most p times. In our algorithm, we initially set n = p = 1 and then progressively
increment either n or p until reaching stability.

REMARK 7.1 (COMPLEXITY OF 1, »(M)). In general, p(M) may not be constructible efficiently
(i.e. in polynomial time wrt | M|): the rules (@) and (Y) have arity at most p+1, while the corresponding
operations on terms are at most binary, yielding a derivation much larger than the corresponding
PCF()_())-typing, as well as a longer computation time due to p + 1-ary products (as the time for
computing multiplications - optimized or not - grows exponentially in the number of factors, cf. Theorem
6.9); moreover, also the index sets I may grow very large, as they vary over all reﬁnings [ai,...,ak] < b,
with k < p, of the corresponding types A — B. However, when p = 1, m, (M), correspondmg to
looking to affine reductions (i.e. in which terms may be deleted but not dupllcated) with at most n
Y-unfolding, only requires binary multiplications VN(s;s,) (computed in time O(d***?) by Theorem
6.9) and has size O (n|M|3"), where t is the maximum size of a simple type in M. This bound is obtained
by unfolding the subterms YP as P'y (so that the sum of all such i does not exceed n), yielding a term
of size O(n|M|), observing that the arity of (@), (Y) is at most 2, and noticing that the index sets I
cannot exceed the number ofaﬁ'ine reﬁnings of the corresponding type (which are obtained by replacing
each atom Bool, N by any of [], [0], [1]), which is bounded by 3'.

Example 7.10. Let us illustrate our algorithm for the term M, from Example 2.3. Let 7 be a
derivation of ND : (+*0 0 | +* 1), capturing the four reductions of ND to either 0 or 1, where,
letting X° = X and X! = X, u; = XoX| + %Xé. One can similarly construct a derivation ; of
B: (+% [] —o [i] = T)peqo,1}, capturing the two reductions (YB)i -» B(YB)i -» 1 that unfold Y
only once, where v; = X3,;. We construct 7} (M) by combining 7 and 7 via the Y-rule yielding
M, : (+*° 1), where s = ugvg + u0; captures all reductions of M, with one Y-unfolding. To construct

AZ(M) we must construct a derivation m, of B : (+ [[j] — 1] —o [i] — 1);je(0,1}, Where
ij = X34iX],,, which tracks all pairs of reductions (YB)i - B(YB)i - (YB)(Ni), of weight X3,;,
and Ni - j, of weight Xf+i. The derivation 77,’2’1 (M) of of M, : (+° 1), is illustrated in Fig. 8, where
Now s = Ugvy + U101 + Uglgoly + Uplo101 + U1t100g + U1t1101 captures all reductions of M, with at
most 2 Y-unfoldings. With n = 3, we can iterate the process adding a new Y-rule. Intuitively, this
should lead to add to s all monomials wgpe = ugtaptpcve, for a, b, c € {0, 1}, corresponding to 3
iterations. However, each wgp. is dominated by one monomial in s: we have that either a = b,b = ¢
or a = ¢; if a = b holds, then wy, is dominated by u,t,c0., and similarly for the other cases. Hence
ﬂ;’l(M) yields the same polynomial as ﬂzl’l(M). Moreover, further incrementing either n or p does
not make the polynomial change. In fact, we can easily see that the minimal polynomial s produced
by 7[21’1(M) coincides NP!. (Mj): an arbitrary trajectory of M, yields a monomial of the form
Wa,..aps = Yartaray - - - tapans, Vans» and if n > 2, then the monomial wy, _g,,, is dominated by some
monomial in s. As anticipated in Section 3, it follows then that d'(M;) = deg(s) = 5.

The result below shows that the algorithm above stabilizes onto the minimal Newton polynomial.

THEOREM 7.11. For any PCF(X)-term M : Bool and i € {0, 1}, there exists n, p € N such that the
derivation 1% := np(M) is stable and proves M : (+* i), where s = (t[M])min = NP' . (M).

min

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:26 Davide Barbarossa and Paolo Pistone

m
T+ Ty B: < FO [— [J] — 1>js{0,1}
Bi(ro [l il = 1| ¥ [l =1l [l 1),y YB:(0] ¥ [j] 1)
YB : < |Oittiovo+tin vy [I] —]>

jefo.1} o
ND: (%0 | +4 1)

ie{0,1}
M, : < |- Yoo+t 01+ Loo Do+ To1 01 +U1 E10 Do+t 1110y])

Fig. 8. Derivation gstab = 7r21,1 (M), where u; = Xoxli +)T()X£, 0; = X34; and tij = X3+i)_({+i.

Proor. By Corollary 5.5 supp([[MﬂiX)min is finite and by Theorem 7.8 all its points are reached
by some Py;op-derivations. We can then set n and p to be larger than the corresponding numbers of
Y-unfoldings and multiset sizes in all such (finitely many) derivations. O

Stabilization at n, p is a I1¢ (i.e. non-recursive) property: it means that for any n’, p’ larger than
n, p, the produced polynomial does not change. Therefore we might not be able to tell when the
algorithm did actually stabilize. Recall that, by Theorem 5.9, we cannot hope to compute N Prinin (M)
in all situations (even though we always compute (traj’(7))min, by Proposition 7.5). In practice, we
can let the proof-search algorithm terminate after the polynomial has remained stable for some
fixed number of iterations (for instance, one stable iteration was enough to reach N Prinin (M) in

Examples 7.2 and 7.10). Let 7% be the derivation obtained after a finite number of stable iterations.

REMARK 7.2 (REACHING EFFICIENCY IN THE AFFINE CASE). As we observed, when the most-likely
reductions of M are affine, we can reach m°® via the derivations 71';!’1 (M), which have size O (n|M|3").
This is indeed the situation underlying our examples 7.2, 7.9 and 7.10. By contrast, any affine reduction
of M can make at most |M| probabilistic choices (since any choice strictly decreases the size of the
term), so the trajectory space explored by each such derivation has in general size O (2M1).

7.3.2 Extracting a (Partial) Solution from 75°. We now show how the set selected_trajs’(M)
is extracted from a (candidate) stable derivation.

By a straightforward adaptation of the algorithm VN (cf. Remark 2.2) and of the Pyqp-rules we
can perform a traceback of s, i.e. keep track, at each step of the construction of #5b of a word

wy, € {0,1}", describing the sequence of probabilistic choices made during a reduction M Lt
the word w,, then traces back one most likely explanation. Moreover, for any monomial y in s,
we can compute the normal cone of (the convex polytope generated by) s at vertex yu, defined as
N(u;s) = {x | x- g = miny,es x - v}, see [28, p. 193]. Computing N (y;s) corresponds to solving
the linear system of inequalities {(z — v)x < 0},¢s, which can be done via linear programming
(cf. [51]). Observe that N (p; s) precisely captures the set of (— In-)values that maximize p across all
vertices in s, that is, that make the pair (4, w,) a most likely explanation across those in s.

We can then let selected_trajs’(M) = {(p, wu, N(155)) | pin s}. The following holds:

THEOREM 7.12. (1) the pairs (yu, w,) in selected_trajs’(M) identify the most likely trajecto-
ries in traj’ (7°2°) (resp. the most likely trajectories M —» i in case 752 = 75%2P),
(2) the sets N'(u;s) in selected_trajs'(M) identify all (- In)-values of the parameters X mini-

mizing pi across all traj’ (752°) (resp. across all trajectories M — i in case 7" = 75t2b),

Whenever 752 = 75 j e. the proof search reached the Newton polynomial, the result above

states that selected_trajs’(M) provides a correct answer to both (I1) and (I2). Otherwise, it
provides an answer to (I1) and (I2) only relatively to the trajectories explored by 752> = . »(M). This
means that any selected trajectory could still be dominated by some intuitively larger one, i.e. one
requiring either more than n Y-unfoldings or f-reductions performing more than p duplications.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

Tropical Geometry of Probabilistic Programming Languages 33:27

8 Conclusion

Related Work. A growing literature has explored foundational approaches to graphical proba-
bilistic models and higher-order languages for them, both from a categorical [15, 30, 31, 48, 48] and
from a more type-theoretic perspective [23]. Methods for statistical inference based on tropical
polynomials and the Newton polytope, in the line of Section 4, have been explored for several types
of graphical probabilistic models, including HMM and Boltzmann machines [14, 38, 45, 46, 49].
Tropical geometry has also been applied to the study of deep neural networks with ReLU activation
functions [12, 38, 53], as well as to piecewise linear regression [39]. The interpretation of proba-
bilistic PCF in the weighted relational model of linear logic is well-studied. The fully abstract model
of probabilistic coherent spaces [21] relies on it. Tropical variants of this semantics are studied first
in [35], and more recently in [6]. Beyond the one from [21], many other kinds of intersection type
systems to capture probabilistic properties have been proposed, e.g. [3, 10, 29].

Future Work. In this paper we demonstrated the potential of combining methods from program-
ming language theory (especially, weighted relational semantics) and tropical geometry, by applying
them to study most likely behaviours of probabilistic higher-order programs. We are convinced
that this interaction leads to many other interesting applications in programming language theory.

For instance, in this paper we only manipulated the tropicalization by means of the trivial
valuation valy : N® — T that sends 0 to co and all coefficients n > 0 to 0. This was enough to
study the most probable outcomes, but considering other valuations may lead to capture different
properties of probabilistic programs. For example, val. : Rsg — R defined by val.(x) = —clnx
yields an exciting connection with differential privacy [19] (already studied from the perspective of
programming languages [5, 17, 24]), that we are currently exploring: for a function f : db — Dist(X)
(corresponding to some probabilistic protocol), it is not difficult to see that f is e-differentially
private precisely when the function val, o f : db — [X — R] is e-Lipschitz continuous, taking
the Euclidean distance on R. As tropical polynomials are always Lipschitz-continuous (they are
piecewise linear functions), this suggests that a program with finite tropical degree (w.r.t. the
valuation val., not valy as in this work) could be proved differentially private.

Another important future work is to implement our type system, in order to mechanise, in
interaction with the user, some inference tasks over programs as explained in Section 7. Related
to that, we notice that the crucial notion of minimal monomial in a (Newton) polytope, that we
develop in Section 6, is reminiscent of that of Grobner basis in computational algebra. Similarly, we
wonder whether the algebra of generating functions - essentially, the formal power series given by
our parametric interpretation — reflects computational properties of programs.

Beyond that, there are other natural areas of applications. For instance, [6] illustrated a notion of
differentiation for tropical power series, relying on the theory of cartesian differential categories
[9, 37], that aligns with existing notions in the literature on tropical differential equations [27].
Finally, the growing interest towards higher-order frameworks for automatic differentiation [41, 50]
suggests to look at the tropical methods currently employed for ReLU neural networks [25, 38].

Acknowledgments

The authors would like to greatly thank the anonymous reviewers for their careful reading and for
several questions that helped us significantly improve the first version of the paper.

Davide Barbarossa has been funded by the EPSRC grant number EP/W035847/1. Paolo Pistone
has been funded by the ANR grant number ANR-23-CPJ1-0054-01. For the purpose of Open Access
the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

33:28 Davide Barbarossa and Paolo Pistone

References

[1] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. 2018. Tight typings and split bounds. Proc. ACM
Program. Lang. 2, ICFP, Article 94 (July 2018), 30 pages. https://doi.org/10.1145/3236789

[2] S.M. Aji and R.J. McEliece. 2000. The generalized distributive law. IEEE Transactions on Information Theory 46, 2 (2000),
325-343. https://doi.org/10.1109/18.825794

[3] Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone. 2022. Curry and Howard Meet Borel. In Proceedings of the 37th
Annual ACM/IEEE Symposium on Logic in Computer Science (Haifa, Israel) (LICS °22). Association for Computing
Machinery, New York, NY, USA, Article 45, 13 pages. https://doi.org/10.1145/3531130.3533361

[4] Victor Arrial, Giulio Guerrieri, and Delia Kesner. 2023. Quantitative Inhabitation for Different Lambda Calculi in a
Unifying Framework. Proc. ACM Program. Lang. 7, POPL, Article 51 (Jan. 2023), 31 pages. https://doi.org/10.1145/
3571244

[5] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and Ikram Cherigui. 2017. A Semantic
Account of Metric Preservation. In Proceedings POPL 2017 (Paris, France). Association for Computing Machinery, New
York, NY, USA, 545-556. https://doi.org/10.1145/3009837.3009890

[6] Davide Barbarossa and Paolo Pistone. 2024. Tropical Mathematics and the Lambda-Calculus I: Metric and Differential
Analysis of Effectful Programs. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 288), Aniello Murano and Alexandra Silva (Eds.). Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 14:1-14:23. https://doi.org/10.4230/LIPIcs.CSL.2024.14

[7] Davide Barbarossa and Paolo Pistone. 2025. Tropical Mathematics and the Lambda-Calculus II: Tropical Geometry of
Probabilistic Programming Languages (Extended Version). (2025). https://arxiv.org/abs/2501.15637.

[8] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry: Algorithms and
Applications (3rd ed.). Springer-Verlag TELOS, Santa Clara, CA, USA. https://doi.org/10.1007/978-3-540-77974-2

[9] Richard F. Blute, Robin Cockett, and R.A.G. Seely. 2009. Cartesian Differential Categories. Theory and Applications of
Categories 22, 23 (2009), 622-672.

[10] Flavien Breuvart and Ugo Dal Lago. 2018. On Intersection Types and Probabilistic Lambda Calculi. In Proceedings
PPDP 2018 (Frankfurt am Main, Germany) (PPDP ’18). Association for Computing Machinery, New York, NY, USA,
Article 8, 13 pages. https:/doi.org/10.1145/3236950.3236968

[11] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. 2017. Non-idempotent intersection types for the Lambda-
Calculus. Logic Journal of the IGPL 25, 4 (2017), 431-464. https://doi.org/10.1093/jigpal/jzx018

[12] Vasileios Charisopoulos and Petros Maragos. 2017. Morphological Perceptrons: Geometry and Training Algorithms. In
Mathematical Morphology and Its Applications to Signal and Image Processing, Jesus Angulo, Santiago Velasco-Forero, and
Fernand Meyer (Eds.). Springer International Publishing, Cham, 3-15. https://doi.org/10.1007/978-3-319-57240-6_1

[13] Pierre Clairambault and Simon Forest. 2024. An Analysis of Symmetry in Quantitative Semantics. In Proceedings

of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia, July 8-11, 2024,

Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza (Eds.). Asociation for Computing Machinery, New York, NY, USA,

26:1-26:13. https://doi.org/10.1145/3661814.3662092

Maria Angelica Cueto, Jason Morton, and Bernd Sturmfels. 2010. Geometry of the restricted Boltzmann machine.

Algebraic Methods in Statistics and Probability 516, 93 (2010), 135-153. https://doi.org/10.1090/conm/516/10172

Fredrik Dahlqvist, Alexandra Silva, Vincent Danos, and Ilias Garnier. 2018. Borel Kernels and their Approximation,

Categorically. Electronic Notes in Theoretical Computer Science 341 (2018), 91-119. https://doi.org/10.1016/j.entcs.2018.

11.006 Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics

(MFPS XXXIV).

Sandip Das, Subhadeep Ranjan Dev, and Swami Sarvottamananda. 2021. A Worst-Case Optimal Algorithm to Compute

the Minkowski Sum of Convex Polytopes. In Algorithms and Discrete Applied Mathematics, Apurva Mudgal and C. R.

Subramanian (Eds.). Springer International Publishing, Cham, 179-195. https://doi.org/10.1007/978-3-030-67899-9_14

[17] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata. 2019. Probabilistic Relational
Reasoning via Metrics. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1-19. https:
//doi.org/10.1109/LICS.2019.8785715

[18] Daniel de Carvalho. 2018. Execution time of A-terms via denotational semantics and intersection types. Mathematical
Structures in Computer Science 28, 7 (2018), 1169-1203. https://doi.org/10.1017/50960129516000396

[19] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differential Privacy. Found. Trends Theor.
Comput. Sci. 9, 3-4 (Aug. 2014), 211-407. https://doi.org/10.1561/0400000042

[20] Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2017. Measurable cones and stable, measurable functions: a
model for probabilistic higher-order programming. Proc. ACM Program. Lang. 2, POPL, Article 59 (Dec. 2017), 28 pages.
https://doi.org/10.1145/3158147

[21] Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2018. Full Abstraction for Probabilistic PCF. . ACM 65, 4,
Article 23 (2018), 44 pages. https://doi.org/10.1145/3164540

[14

—

[15

—

[16

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

https://doi.org/10.1145/3236789
https://doi.org/10.1109/18.825794
https://doi.org/10.1145/3531130.3533361
https://doi.org/10.1145/3571244
https://doi.org/10.1145/3571244
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.4230/LIPIcs.CSL.2024.14
https://arxiv.org/abs/2501.15637
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/978-3-319-57240-6_1
https://doi.org/10.1145/3661814.3662092
https://doi.org/10.1090/conm/516/10172
https://doi.org/10.1016/j.entcs.2018.11.006
https://doi.org/10.1016/j.entcs.2018.11.006
https://doi.org/10.1007/978-3-030-67899-9_14
https://doi.org/10.1109/LICS.2019.8785715
https://doi.org/10.1109/LICS.2019.8785715
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/3158147
https://doi.org/10.1145/3164540

Tropical Geometry of Probabilistic Programming Languages 33:29

[22] Thomas Ehrhard, Christine Tasson, and Michele Pagani. 2014. Probabilistic coherence spaces are fully abstract

for probabilistic PCF. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (San Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA,

309-320. https://doi.org/10.1145/2535838.2535865

Claudia Faggian, Daniele Pautasso, and Gabriele Vanoni. 2024. Higher Order Bayesian Networks, Exactly. Proc. ACM

Program. Lang. 8, POPL, Article 84 (Jan. 2024), 33 pages. https://doi.org/10.1145/3632926

[24] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear Dependent
Types for Differential Privacy. SIGPLAN Not. 48, 1 (jan 2013), 357-370. https://doi.org/10.1145/2480359.2429113

[25] Jeffrey Giansiracusa and Stefano Mereta. 2024. A general framework for tropical differential equations. manuscripta
mathematica 173, 3 (2024), 1273-1304. https://doi.org/10.1007/s00229-023-01492-5

[26] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic programming.
In Future of Software Engineering Proceedings (Hyderabad, India) (FOSE 2014). Association for Computing Machinery,
New York, NY, USA, 167-181. https://doi.org/10.1145/2593882.2593900

[27] Dima Grigoriev. 2017. Tropical differential equations. Advances in Applied Mathematics 82 (2017), 120-128. https:
//doi.org/10.1016/j.aam.2016.08.002

[28] M. Ziegler Giinter. 1995. Lectures on Polytopes. Graduate Texts in Mathematics, Vol. 152. Springer-Verlag, New York,
NY, USA. https://doi.org/10.1007/978-1-4613-8431-1

[29] Willem Heijltjes and Georgina Majury. 2025. Simple Types for Probabilistic Termination. In 33rd EACSL Annual
Conference on Computer Science Logic (CSL 2025) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 326),
Jorg Endrullis and Sylvain Schmitz (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
31:1-31:21. https://doi.org/10.4230/LIPIcs.CSL.2025.31

[30] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order
probability theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Asociation for
Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1109/LICS.2017.8005137

[31] Bart Jacobs and Fabio Zanasi. 2020. The Logical Essentials of Bayesian Reasoning. In Foundations of Probabilistic

Programming, Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva (Eds.). Cambridge University Press, Cambridge,

UK, 295-332. https://doi.org/10.1017/9781108770750.010

Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation

and Machine Learning. The MIT Press, Cambridge, Massachusetts.

[33] James Laird. 2016. Weighted Relational Models for Mobility. In 1st International Conference on Formal Structures for
Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal (LIPIcs, Vol. 52), Delia Kesner and Brigitte
Pientka (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 24:1-24:15. https://doi.org/10.
4230/LIPICS.FSCD.2016.24

[34] James Laird. 2020. Weighted models for higher-order computation. Inf. Comput. 275 (2020), 104645. https://doi.org/10.
1016/].1C.2020.104645

[35] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. 2013. Weighted Relational Models of Typed
Lambda-Calculi. In 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. Asociation for Computing
Machinery, New York, NY, USA, 301-310. https://doi.org/10.1109/LICS.2013.36

[36] Diane Maclagan and Bernd Sturmfels. 2015. Introduction to tropical geometry. Graduate Studies in Mathematics, Vol. 161.
American Mathematical Society, Providence, Rhode Island.

[37] Giulio Manzonetto. 2012. What is a categorical model of the differential and the resource A-calculi? Mathematical
Structures in Computer Science 22, 3 (2012), 451-520. https://doi.org/D0OI:10.1017/S0960129511000594

[38] Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. 2021. Tropical Geometry and Machine Learning.
Proc. IEEE 109, 5 (2021), 728-755. https://doi.org/10.1109/JPROC.2021.3065238

[39] Petros Maragos and Emmanouil Theodosis. 2020. Multivariate Tropical Regression and Piecewise-Linear Surface
Fitting. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE
Computer Society, 3822-3826. https://doi.org/10.1109/ICASSP40776.2020.9054058

[40] Simone Martini. 1992. Categorical models for non-extensional A-calculi and combinatory logic. Math. Struct. Comput.

Sci. 2,3 (1992), 327-357. https://doi.org/10.1017/5096012950000150X

Damiano Mazza and Michele Pagani. 2021. Automatic differentiation in PCF. Proc. ACM Program. Lang. 5, POPL (2021),

1-27. https://doi.org/10.1145/3434309

Peter McMullen. 1989. The polytope algebra. Advances in Mathematics 78, 1 (1989), 76-130. https://doi.org/10.1016/0001-

8708(89)90029-7

[43] Gian Maria Negri Porzio, Vanni Noferini, and Leonardo Robol. 2021. Tropical Laurent series, their tropical roots, and
localization results for the eigenvalues of nonlinear matrix functions. (2021). https://arxiv.org/abs/2107.07982.

[44] Vanni Noferini, Meisam Sharify, and Francoise Tisseur. 2015. Tropical Roots as Approximations to Eigenvalues of
Matrix Polynomials. SIAM J. Matrix Anal. Appl. 36, 1 (jan 2015), 138-157. https://doi.org/10.1137/14096637X

[23

—

[32

—

[41

—

[42

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

https://doi.org/10.1145/2535838.2535865
https://doi.org/10.1145/3632926
https://doi.org/10.1145/2480359.2429113
https://doi.org/10.1007/s00229-023-01492-5
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1016/j.aam.2016.08.002
https://doi.org/10.1016/j.aam.2016.08.002
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.4230/LIPIcs.CSL.2025.31
https://doi.org/10.1109/LICS.2017.8005137
https://doi.org/10.1017/9781108770750.010
https://doi.org/10.4230/LIPICS.FSCD.2016.24
https://doi.org/10.4230/LIPICS.FSCD.2016.24
https://doi.org/10.1016/J.IC.2020.104645
https://doi.org/10.1016/J.IC.2020.104645
https://doi.org/10.1109/LICS.2013.36
https://doi.org/DOI: 10.1017/S0960129511000594
https://doi.org/10.1109/JPROC.2021.3065238
https://doi.org/10.1109/ICASSP40776.2020.9054058
https://doi.org/10.1017/S096012950000150X
https://doi.org/10.1145/3434309
https://doi.org/10.1016/0001-8708(89)90029-7
https://doi.org/10.1016/0001-8708(89)90029-7
https://arxiv.org/abs/2107.07982
https://doi.org/10.1137/14096637X

33:30 Davide Barbarossa and Paolo Pistone

[45] Lior Pachter and Bernd Sturmfels. 2004. Parametric inference for biological sequence analysis. Proc Natl Acad Sci U S
A 101, 46 (Nov 2004), 16138-16143. https://doi.org/10.1073/pnas.0406011101

[46] Lior Pachter and Bernd Sturmfels. 2004. Tropical geometry of statistical models. Proceedings of the National Academy
of Sciences 101, 46 (2023/01/16 2004), 16132-16137. https://doi.org/10.1073/pnas.0406010101

[47] Michele Pagani, Peter Selinger, and Benoit Valiron. 2014. Applying quantitative semantics to higher-order quantum
computing. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 647-658. https:
//doi.org/10.1145/2535838.2535879

[48] Adam Scibior, Ohad Kammar, Matthijs Vakar, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss,
Chris Heunen, and Zoubin Ghahramani. 2017. Denotational validation of higher-order Bayesian inference. Proc. ACM
Program. Lang. 2, POPL, Article 60 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158148

[49] Emmanouil Theodosis and Petros Maragos. 2018. Analysis of the Viterbi Algorithm Using Tropical Algebra and

Geometry. In 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

1-5. https://doi.org/10.1109/SPAWC.2018.8445777

Matthijs Vakar and Tom Smeding. 2022. CHAD: Combinatory Homomorphic Automatic Differentiation. ACM Trans.

Program. Lang. Syst. 44, 3 (2022), 20:1-20:49. https://doi.org/10.1145/3527634

[51] Wayne L. Winston. 1988. Operations research: Applications and algorithms. Vol. 18. Duxbury press, Boston. https:
//doi.org/10.1002/net.3230180310

[52] Henk Wymeersch. 2007. Factor graphs and the sum—product algorithm. Cambridge University Press, Cambridge, UK,
35-76. https://doi.org/10.1017/CBO9780511619199.006

[53] Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. 2018. Tropical Geometry of Deep Neural Networks. In Proceedings
ICML 2018 (Proceedings of Machine Learning Research, Vol. 80). PMLR, 5819-5827. http://proceedings.mlr.press/v80/
zhang18i.html

[50

—

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 33. Publication date: January 2026.

https://doi.org/10.1073/pnas.0406011101
https://doi.org/10.1073/pnas.0406010101
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1145/2535838.2535879
https://doi.org/10.1145/3158148
https://doi.org/10.1109/SPAWC.2018.8445777
https://doi.org/10.1145/3527634
https://doi.org/10.1002/net.3230180310
https://doi.org/10.1002/net.3230180310
https://doi.org/10.1017/CBO9780511619199.006
http://proceedings.mlr.press/v80/zhang18i.html
http://proceedings.mlr.press/v80/zhang18i.html

	Abstract
	1 Introduction
	2 Parametric PCF: Specifying Models via Higher-Order Programs
	2.1 The language PCF
	2.2 PCF and Graphical Probabilistic Models

	3 Can We Do Statistical Inference over PCF Programs?
	3.1 Most Likely Explanations and the Tropical Degree
	3.2 Most Likely Explanations Efficiently, via the Newton Polytope

	4 Parametric Weighted Relational Semantics
	4.1 Formal Power Series
	4.2 Interpreting (Probabilistic) PCF-Programs as Formal Power Series
	4.3 Interpreting PCF-Programs as Formal Power Series
	4.4 Tropical Analytic Functions

	5 The Tropical Degree
	6 Convex Geometry and Newton Polytopes
	6.1 The Newton Polytope
	6.2 The Minimal Newton Polytope
	6.3 The Viterbi-Newton Algorithm

	7 Tropical Intersection Type System
	7.1 The Type System Ptrop
	7.2 Soundness and Completeness of Ptrop for the Parametric WRS
	7.3 Constructing a Solution to Tasks (I1) and (I2)

	8 Conclusion
	Acknowledgments
	References

