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Abstract
The 𝜆𝜇-calculus plays a central role in the theory of pro-
gramming languages as it extends the Curry-Howard cor-
respondence to classical logic. A major drawback is that
it does not satisfy Böhm’s Theorem and it lacks the corre-
sponding notion of approximation. On the contrary, we show
that Ehrhard and Regnier’s Taylor expansion can be easily
adapted, thus providing a resource conscious approximation
theory. This produces a sensible 𝜆𝜇-theory with which we
prove some advanced properties of the 𝜆𝜇-calculus, such as
Stability and Perpendicular Lines Property, from which the
impossibility of parallel computations follows.

CCS Concepts: • Theory of computation→ Lambda cal-
culus; Linear logic; Rewrite systems.
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1 Introduction
1.1 Motivation
1.1.1 Curry-Howard correspondence for classical logic.
The celebrated Curry-Howard correspondence states that a
class of programs, written in a suitable programming lan-
guage, and intuitionistic logic proofs, written in an suitable
formal system, are the same mathematical objects. The typ-
ical suitable programming language is 𝜆-calculus, and the
typical suitable formal system is intuitionistic natural de-
duction NJ; under this correspondence, the simply typed
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𝜆-calculus is identified with NJ. A natural question is what
happens for classical logic proofs and whether it is possible
to find such a correspondence at all. In the 90’s, several ways
for generalising such a correspondence to this framework
appeared, starting from [13] where Griffin suggests to type
control operators (such as Scheme’s callcc or Felleisen’s C
operator) with Peirce’s law. One of the most notable ones is
the 𝜆𝜇-calculus, introduced by Parigot in [25], which has the
advantage of allowing the correspondence to take the exact
same form as in the intuitionistic case: just like 𝜆-calculus
is the Turing-complete programming language in which
intuitionistic logic expresses its computational content, 𝜆𝜇-
calculus is the one expressing the computational content of
classical logic. From the programming viewpoint, the big
difference between 𝜆-calculus and 𝜆𝜇-calculus is that the for-
mer is a purely functional language, while the latter is impure,
due to the possibility of encoding control operators in it —
like the already mentioned callcc or C. From the point of
view of, e.g., Classical realizability [19], this corresponds to
the backtracking mechanism related to classical reasoning.

1.1.2 Taylor expanding programs. Just before the 90’s
another major discovery in logic and computer science ap-
peared: Girard’s linear logic [12]. This opened a whole new
field of research, in which the common line is the deep role
reserved to resources in a computation/proof. Linear logic
allowed Ehrhard and Regnier to discover an astonishing
correspondence between linearity in analysis and linearity
in computer science, that is formalized in the differential
𝜆-calculus [9] (and differential interaction nets [10]). It is
possible to Taylor expand programs/proofs by – as in anal-
ysis – an infinite series of approximants weighted via the
usual factorial coefficients. This is usually called the “full”
or “quantitative” Taylor expansion. However, it turns out
that even if we do not consider the coefficients, we still ob-
tain a meaningful theory of program approximation: it is
usually called the “qualitative” Taylor expansion, and will
play a central role in the present article. Under the assump-
tion of having an idempotent sum, the Taylor expansion
is no longer a series but becomes a set, and the approxi-
mants can be written in a simple “target language”, called
resource calculus (very similar to Boudol’s calculus with mul-
tiplicities [4]). In [1], it is shown that all the fundamental
results in the so called approximation theory of 𝜆-calculus

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


Haifa’22, 2–5 August 2022, Haifa, Israel Davide Barbarossa

(Monotonicity, Genericity, Continuity, Stability, Perpendicu-
lar Lines Property), usually achieved via labelled reductions
and Böhm trees [2, Chapter 14], can be actually proven – in
an arguably more satisfactory way – via (qualitative) Taylor
expansion; in other words, in 𝜆-calculus, resource approxi-
mation (which is at the basis of Taylor expansion) “subsumes”
Böhm trees approximation, and answers positively to a pro-
posal expressed in [9] where Ehrhard and Regnier mention
that: “Understanding the relation between the term and its
full Taylor expansion might be the starting point of a renewing
of the theory of approximation.”

1.1.3 The content of this paper. The aforementioned
“approximation results” are in fact at the basis of a mathe-
matical study of 𝜆-calculus, deep from the conceptual, math-
ematical and computational viewpoint. A natural question is
then: what about for other programming languages? There
are many works which extend the notion of (qualitative as
well as quantitative) Taylor expansion to other programming
languages ([5, 6, 17, 21, 31]), usually concentrating on its rela-
tions with normalisation. Not always easy is, then, applying
it to actually study the properties of the source language.
This is maybe due to the fact that, unlike in the long time
studied 𝜆-calculus, for other languages one does not really
know what a “mathematical theory of it” should look like.
In the present work, we tackle the case of 𝜆𝜇-calculus for
which, to the best of our knowledge, the problem of directly
defining a Taylor expansion has never been priorly consid-
ered. In this sense, our work can be seen as a continuation
of the above mentioned series of papers, and may be related
to [18] where the authors study non-idempotent intersection
and union types for 𝜆𝜇-calculus.

We propose here to reverse the above proposal of Ehrhard
and Regnier and start by defining a resource sensitive version
and a Taylor expansion for 𝜆𝜇-calculus, trying then to use
this approximation machinery to prove – following [1] –
mathematical properties of the language.

A notable work has to be mentioned: in [30], Vaux-Auclair
defines a full differential 𝜆𝜇-calculus following the steps
of [9]. Its version takes coefficients into account, and as
always this raises a series of non-trivial problems to handle.
However, he does not define a Taylor expansion nor does
he apply those tools to find properties of the language. The
present work can thus be seen also as a continuation of
Vaux-Auclair’s one.

There are, from our point of view, several reasons for con-
sidering the 𝜆𝜇-calculus: first of all, from the Curry-Howard
point of view, it is the natural “successor” of 𝜆-calculus. More-
over, it is a standard reference for the study of control opera-
tors in functional languages. Yet, there are just few attempts
to really study its mathematical theory, and the state of the
art is not comparable with the well-established one for 𝜆-
calculus. For example, Laurent in [23] makes the following
observation: “Models of the simply typed 𝜆-calculus, of the

untyped 𝜆-calculus and of the simply typed 𝜆𝜇-calculus are
well understood, but what about models of the untyped 𝜆𝜇-
calculus? As far as we know, this question has been almost
ignored.” With the same motivation, we look at the other
major part which constitutes a mathematical theory of a
programming language, namely the theory of approximation.
In this sense, the present work can be seen as a continuation
of [23].

Other points in relation with Krivine’s classical realizabil-
ity, proof-nets, CPS-translations and Saurin’s Λ𝜇-calculus
will be mentioned in the conclusions.

The article is organised as follows: in Section 2 we define
the resource 𝜆𝜇-calculus and prove that it is strongly nor-
malising and confluent (Corollaries 2.13 and 2.30). In Section
3 we define the qualitative Taylor expansion and prove its
main properties, which give rise to a non-trivial sensible
“𝜆𝜇-theory” (Corollary 3.15). In Section 4 we apply these ap-
proximation tools to prove two important results: Stability
(Theorem 4.1) and Perpendicular Lines Property (Theorem
4.4). As a consequence, we obtain the non-representability
of parallel-or in 𝜆𝜇-calculus (Corollaries 4.2 and 4.5).

1.2 Quick overview of 𝜆𝜇-calculus
We briefly recall the definition of the 𝜆𝜇-calculus, and intro-
duce some basic notions and notation.

Definition 1.1. Fix a countable set whose elements are called
variables and a disjoint countable set whose elements are called
names. The set 𝜆𝜇 of 𝜆𝜇-terms is generated by the following
grammar:

𝑀 ::= 𝑥 | 𝜆𝑥 .𝑀 | 𝑀𝑀 | 𝜇𝛼.𝛽 |𝑀 |

(for 𝑥 a variable and 𝛼, 𝛽 names) in which, as usual, 𝜆 binds 𝑥
in𝑀 as well as 𝜇 binds 𝛼 in 𝛽 |𝑀 |. Terms are considered up to
renaming of bound variables and names.

Despite not being actual subterms, words of shape 𝛼 |𝑀 |
are called named terms1.𝑀 is said to be named under 𝛼 .
The 𝑘-contexts (also called multihole-contexts when 𝑘 is

generic) 𝐶 = 𝐶{𝜉1, . . . , 𝜉𝑘 } are defined as expected by:

𝐶 ::= 𝑥 | 𝜉𝑖 | 𝜆𝑥 .𝐶 | 𝐶𝐶 | 𝜇𝛼.𝛽 |𝐶 |

where {𝜉1, . . . , 𝜉𝑘 } is a new set whose elements are called
holes. 1-contexts are simply called contexts. A context with
exactly one occurrence of the hole is called single-hole, and
as usual satisfy: 𝐶 ::= 𝜉𝑖 | 𝜆𝑥.𝐶 | 𝐶𝑀 | 𝑀𝐶 | 𝜇𝛼.𝛽 |𝐶 |.

1Historically named terms are written as [𝛼 ]𝑀 , as in [25]. But this notation
has to be given up since the use of square brackets is already imperatively
taken by the finite multisets, which we will encounter constantly in the
following. Another notation, used in [28], is to write 𝑀𝛼 . However in
our framework we find this notation not clear. The notation 𝛼 |𝑀 | should,
instead, clearly show what is inside a “naming” and what is not.
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Definition 1.2. The reduction relation→ of 𝜆𝜇-calculus is
the contextual closure2 of the union→base of:

(𝜆𝑥.𝑀)𝑁 →𝜆 𝑀{𝑁 /𝑥}

(𝜇𝛼.𝛽 |𝑀 |)𝑁 →𝜇 𝜇𝛼.(𝛽 |𝑀 |)𝛼𝑁

𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑀 | | →𝜌 𝜇𝛾 .(𝜂 |𝑀 |{𝛼/𝛽})
where𝑀{𝑁 /𝑥} is the usual capture-free substitution of 𝑁 for
all free occurrences of 𝑥 in𝑀 , 𝜂 |𝑀 |{𝛼/𝛽} replaces 𝛼 for all the
free occurrences of 𝛽 in 𝜂 |𝑀 |, and (𝑀)𝛼𝑁 is given by:

(𝑥)𝛼𝑁 := 𝑥

(𝜆𝑥 .𝑀)𝛼𝑁 := 𝜆𝑥.(𝑀)𝛼𝑁
(𝑀𝑃)𝛼𝑁 := ((𝑀)𝛼𝑁 ) ((𝑃)𝛼𝑁 )
(𝜇𝛽.𝛾 |𝑀 |)𝛼𝑁 := 𝜇𝛽.𝛾 | (𝑀)𝛼𝑁 | (if 𝛾 ≠ 𝛼)
(𝜇𝛽.𝛼 |𝑀 |)𝛼𝑁 := 𝜇𝛽.𝛼 | ( (𝑀)𝛼𝑁 )𝑁 |.

We denote by =𝜆𝜇𝜌 the equivalence induced by→ on 𝜆𝜇.

The operation (𝑀)𝛼𝑁 coincides with the substitution
𝑀 {𝛼 | (·)𝑁 |/𝛼 |·|}: every named subterm 𝛼 |·| of𝑀 gets substi-
tuted with the named term 𝛼 | (·)𝑁 |. Nevertheless, “morally”,
it is an application: each subterm of 𝑀 named under 𝛼 re-
ceives a copy of 𝑁 to be applied to. This is why we chose the
notation “(𝑀)𝛼𝑁 ", which is reminiscent of the application of
𝑀 to 𝑁 , and the term (𝑀)𝛼𝑁 is called the named application
of𝑀 to 𝑁 through 𝛼 . Such notation is due to [30].
The reduction 𝜆 is the usual 𝛽-reduction (which we call

“𝜆” in order to avoid confusion with names). The reduction 𝜌

is just a renaming of names. The novelty is the 𝜇-reduction
which, in the following section, we are going to “linearise”.
There are many reductions that one can consider on the 𝜆𝜇-
calculus; we chose to stick to those three because they are
the ones considered in the original paper [25].

Theorem 1.3. The 𝜆𝜇-calculus (𝜆𝜇,→) is confluent.

Proof. See proof of Theorem 4.1 of [26]. □

Lemma 1.4. Every 𝜆𝜇-term𝑀 has the following shape:

𝑀 = 𝜆®𝑥1 .𝜇𝛼1.𝛽1 |. . . 𝜆®𝑥𝑘 .𝜇𝛼𝑘 .𝛽𝑘 |𝑅 ®𝑄 | |

where 𝑅 is either a variable, or a 𝜆-redex or a 𝜇-redex; further-
more, 𝑅, ®𝑄 , 𝑘 , ®𝑥𝑖 and 𝛼𝑖 are unique. 𝑅 is called the head redex
of𝑀 if it is a 𝜆𝜇-redex, and it is called the head variable of𝑀
otherwise. The sequence 𝜆®𝑥1 .𝜇𝛼1.𝛽1 |. . . 𝜆®𝑥𝑘 .𝜇𝛼𝑘 .𝛽𝑘 |∗| | is called
the head of 𝑀 . Therefore, every 𝜆𝜇𝜌-normal 𝜆𝜇-term 𝑀 has
a head variable, has no 𝜌-redexes in its head and (with the
previous notations) ®𝑄 are 𝜆𝜇𝜌-normal 𝜆𝜇-terms.

Other than what we already said in the introduction, we
will not add more explanations of the logical and program-
ming meaning of this calculus. Let us just add here the encod-
ing of callcc in 𝜆𝜇-calculus: callcc := 𝜆𝑦.𝜇𝛼.𝛼 |𝑦 (𝜆𝑥 .𝜇𝛿 .𝛼 |𝑥 |) |.

2The contextual closure of a binary relation R is the binary relation given
by the set: { (𝐶L𝑀 M,𝐶L𝑁 M) | 𝑀R𝑁 and𝐶L . M single hole context}.

2 Resource 𝜆𝜇-calculus
Recall that a multiset 𝐴 on a set 𝑋 is a map from 𝑋 to N. We
use a multiplicative notation: the empty multiset is denoted
with 1 and the union of two multisets 𝐴, 𝐵 is denoted with
𝐴 ∗ 𝐵. The set of multisets on a set 𝑋 is a monoid w.r.t. ∗,
with neutral element 1. We denote with !𝑋 the set of finite
multisets on 𝑋 , that is, multisets 𝐴 with 𝑋 − 𝐴−1 (0) finite.
Such an 𝐴 will be as usual written as 𝐴 = [𝑎1, . . . , 𝑎𝑘 ], with
𝐴(𝑎𝑖 ) repetitions for each 𝑎𝑖 . We will sometimes write𝑚±𝐴
for [𝑚 ± 𝑎1, . . . ,𝑚 ± 𝑎𝑘 ] if𝑚 ± 𝑎𝑖 happens to be defined.

Definition 2.1. The set 𝜆𝜇r of resource 𝜆𝜇-terms is given
by:

𝑡 ::= 𝑥 | 𝜆𝑥 .𝑡 | 𝑡0 [𝑡1, . . . , 𝑡𝑛] | 𝜇𝛼.𝛽 |𝑡 |
where [𝑡1, . . . , 𝑡𝑛] ∈ !𝜆𝜇r (𝑛 ≥ 0), and it is called a bag. Re-
source terms are considered up to renaming of bound variables
and names. Resource-contexts are defined as expected. For
𝜈 a variable or a name, the degree deg𝜈 (𝑡) ∈ N of 𝜈 in 𝑡 , is
defined as the number of free occurrences of 𝜈 in 𝑡 .

The meaning of a resource sensitive application (𝜆𝑥 .𝑡) [®𝑢]
is to non-deterministically choose a way to associate each
resource in the bag with exactly one occurrence of the ar-
gument 𝑥 in 𝑡 . It is thus natural to consider (formal) sums.
If this association cannot be done without erasing or du-
plicating resources, then it annihilates to the empty sum 0.
The operational semantics of a resource sensitive application
(𝜇𝛼.𝛽 |𝑡 |) [®𝑢] will be discussed in Definition 2.5.

Definition 2.2. Call 2⟨𝜆𝜇r⟩ the free module generated by
𝜆𝜇r over the boolean semiring, which simply means the set
of the formal sums of finitely many 𝜆𝜇r-terms, quotiented by
commutativity, idempotency and associativity of +. An element
of 2⟨𝜆𝜇r⟩ will be called a sum (in fact, it is just a finite subset of
𝜆𝜇r). We extend the constructors of 𝜆𝜇r to 2⟨𝜆𝜇r⟩ by linearity,
setting:(∑︁

𝑖0

𝑡𝑖0

) [∑︁
𝑖1

𝑡𝑖1 , . . . ,
∑︁
𝑖𝑛

𝑡𝑖𝑛

]
:=

∑︁
𝑖0,...,𝑖𝑛

𝑡𝑖0 [𝑡𝑖1 , . . . , 𝑡𝑖𝑛 ]

and analogous for 𝜆𝑥.
∑

𝑖 𝑡𝑖 and 𝜇𝛼.𝛽
��� ∑𝑖 𝑡𝑖

���. We denote with 0
the empty sum. It is the neutral element for + and the annihi-
lating element for the above constructors (i.e. when it appears
as any subterm, the whole term becomes 0).

Let us define now a reduction in 𝜆𝜇r (or, better said, in
2⟨𝜆𝜇r⟩). For this, we will need to divide a multiset into a
certain number of “blocks”. This notion already exists in the
literature of combinatorics (see for example [3]).

Definition 2.3. A partition (resp. weak partition) of a multi-
set [®𝑢] is a multiset [[®𝑣1], (𝑘≥1). . . , [®𝑣𝑘 ]] of non empty (resp. pos-
sibly empty) multisets such that [®𝑢] = [®𝑣1] ∗ · · · ∗ [®𝑣𝑘 ]. A com-
position (resp.weak composition -w.c. for short) of a multiset
[®𝑢] is a tuple ( [®𝑣1], . . . , [®𝑣𝑘 ]) of multisets s.t. [[®𝑣1], . . . , [®𝑣𝑘 ]]
is a partition (resp. weak partition) of [®𝑢].
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Observe that the empty bag 1 admits no partitions but
admits infinite weak partitions: they are the multisets of
shape [1, . . . , 1] (ℎ ≥ 1 times 1). Here are some other ex-
amples: the set of all the weak partitions of the bag [𝑥]
is {[[𝑥]], [[𝑥], 1], [[𝑥], 1, 1], . . . }. The set of all weak parti-
tions of [𝑥, 𝑥] is {[[𝑥, 𝑥]], [[𝑥], [𝑥]], [[𝑥, 𝑥], 1], [[𝑥], [𝑥], 1],
[[𝑥, 𝑥], 1, 1], [[𝑥], [𝑥], 1, 1], ...}.

Definition 2.4. Let 𝑡 ∈ 𝜆𝜇r and [®𝑢] ∈ ! 𝜆𝜇r. The linear sub-
stitution 𝑡 ⟨[𝑢1, . . . , 𝑢𝑘 ]/𝑥⟩ ∈ 2⟨𝜆𝜇r⟩ is defined, as usual, in
Figure 1. In order to linearise the 𝜇-reduction we introduce
the linear named application ⟨𝑡⟩𝛼 [®𝑢] ∈ 2⟨𝜆𝜇r⟩, defined in
Figure 2 3.

Remark that, thus, if deg𝛼 (𝑡) = 0 then ⟨𝑡⟩𝛼1 := 𝑡 and
⟨𝑡⟩𝛼 [𝑣, ®𝑢] := 0; if deg𝛼 (𝑡) =: 𝑑 ≠ 0 then: ⟨𝑡⟩𝛼 [®𝑢] is the
sum

∑
𝑡
{
𝛼 | (·) [®𝑠 1] |/𝛼 | · | (1) , . . . , 𝛼 | (·) [®𝑠

𝑑 ] |/
𝛼 | · | (𝑑 )

}
, where the

sum is taken over all ( [®𝑠 1], . . . , [®𝑠 𝑑 ]) w.c. of [®𝑢] of length 𝑑
and 𝛼 |·| (1) , . . . , 𝛼 |·| (𝑑 ) is any fixed enumeration of the occur-
rences of 𝛼 in 𝑡 .

Definition 2.5. Define a reduction→r ⊆ 𝜆𝜇r × 2⟨𝜆𝜇r⟩ as the
resource-context closure of the union→baser of:

(𝜆𝑥.𝑡) [®𝑢] →𝜆r 𝑡 ⟨[®𝑢]/𝑥⟩ 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑡 | | →𝜌r 𝜇𝛾 .(𝜂 |𝑡 |{𝛼/𝛽})
(𝜇𝛼.𝛽 |𝑡 |) [®𝑢] →𝜇r 𝜇𝛼.⟨𝛽 |𝑡 |⟩𝛼 [®𝑢] .

We extend it to all 2⟨𝜆𝜇r⟩ × 2⟨𝜆𝜇r⟩ setting:
→r := {(𝑡 + S,T + S) | 𝑡 →r T and 𝑡 ∉ S}.

Observe that the analogue of Lemma 1.4 holds for 𝜆𝜇r-
terms (in particular we will use the notion of head vari-
able/redex).
The work [1] is an example of how a resource calculus

can be useful, as it enjoys strong properties such as linear-
ity, strong normalisation and confluence. In the resource
𝜆-calculus the last two properties are easy; as we are going
to see, in our case they are more involved.

2.1 Strong normalisation
With→𝜆r we erase exactly one 𝜆, with→𝜌r we erase exactly
one 𝜇. With→𝜇r however, the situation is more subtle: we are
not creating nor erasing 𝜆’s or 𝜇’s (which remain thus in con-
stant number), but we are eventually making the reduct grow
by creating an arbitrarily large number of new applications.
However, in order to pass from the 𝜇-redex (𝜇𝛼.𝛽 |𝑡 |) [®𝑢] to
a reduct 𝑡 ′ ∈ 𝜇𝛼.⟨𝛽 |𝑡 |⟩𝛼 [®𝑢], we: first, decompose [®𝑢] in sev-
eral blocks; then, erase [®𝑢]; finally, put each block inside a
certain named subterm of 𝛽 |𝑡 |. We replaced thus a bag with
many new bags which are at a “deeper depth”. As we will
see in Remark 2.7, it will be immediate to recognize that
actually this depth is necessary bounded by the number of
𝜇-occurrences in the term, which is invariant under→𝜇r , so
the former subtracted to the latter should decrease. Remark
3The induction takes into account also the case of named terms 𝜂 |𝑡 | ; this is
done for technical reasons.

that in the case [®𝑢] = 1, deg𝜇 (𝛽 |𝑡 |) = 0 we do not create new
applications but we simply erase one already existing one,
so we have to make sure our measure decreases in this case
as well.

Definition 2.6. Let 𝑡 be a 𝜆𝜇-term and let 𝑏 be an occurrence
of a bag or of a subterm of 𝑡 . The depth 𝑑𝑡 (𝑏) ∈ N of 𝑏 in 𝑡 is
the number of named subterms of 𝑡 containing 𝑏.

Remark 2.7. By definition of the grammar of the 𝜆𝜇-calculus
there are as many named subterms of 𝑡 as 𝜇-abstractions in 𝑡 ,
i.e. deg𝜇 (𝑡). So we must have: 𝑑𝑡 (𝑏) ≤ deg𝜇 (𝑡).
Definition 2.8. Define the multiset measure m(𝑡) ∈ !N of a
𝜆𝜇r-term 𝑡 as:

m(𝑡) := deg𝜇 (𝑡) − [ 𝑑𝑡 (𝑏) | 𝑏 occurrence of bag in 𝑡 ] .
Remark 2.7 assures that m(𝑡) ∈ !N (and not in !Z). This

is crucial because it allows us to reason by induction w.r.t.
the multiset order on it. The measure m(·) is “almost” the
good one for strong normalization:

Proposition 2.9. If 𝑡 →𝜇r 𝑡
′ + T then m(𝑡) > m(𝑡 ′).

Proof. If 𝑡 →𝜇r 𝑡
′ + T then 𝑡 = 𝑐L (𝜇𝛼.𝛽 |𝑠 |)𝑏0 M and 𝑡 ′ = 𝑐Lℎ M

with ℎ ∈ 𝜇𝛼.⟨𝛽 |𝑠 |⟩𝛼𝑏0 and 𝑐 a single-hole resource context.
Call 𝑘 := deg𝜇 (𝑡) = deg𝜇 (𝑡 ′) and consider deg𝛼 (𝛽 |𝑠 |) ∈ N.
The are two cases:

- Case deg𝛼 (𝛽 |𝑠 |) = 0. By definition of→𝜇r this is possible
only if 𝑏0 = 1 (otherwise 𝑡 →𝜇r 0) and ℎ = 𝜇𝛼.𝛽 |𝑠 |. So in
𝑡 there are the exact same occurrences of bags as in 𝑡 ′ and
they are at the same depth, except for 𝑏0 which is in 𝑡 but not
in 𝑡 ′. This means that m(𝑡) = m(𝑡 ′) ∗ [ 𝑘 − 𝑑𝑡 (𝑏0) ] > m(𝑡 ′).

- Case deg𝛼 (𝛽 |𝑠 |) =: 𝑛 ≥ 1. Then:

ℎ = 𝜇𝛼.𝛽 |𝑠 |
{
𝛼 | (·)𝑏1 |/

𝛼 | · | (1) , . . . , 𝛼 | (·)𝑏𝑛 |/𝛼 | · | (𝑛)
}

for aw.c. (𝑏1, . . . , 𝑏𝑛) of𝑏0. Som(𝑡 ′) = 𝑘−𝐴′ andm(𝑡) = 𝑘−𝐴,
with 𝐴′ and 𝐴 respectively the multisets:
𝐵𝑐
𝑡 ′ ∗ 𝐵

𝑠
𝑡 ′ ∗ [ 𝑑𝑡 ′ (𝑏) | 𝑏 in a 𝑣 ∈ 𝑏𝑖 for an 𝑖 ] ∗ [ 𝑑𝑡 ′ (𝑏1), . . . , 𝑑𝑡 ′ (𝑏𝑛) ]

𝐵𝑐𝑡 ∗ 𝐵𝑠𝑡 ∗ [ 𝑑𝑡 (𝑏) | 𝑏 in a 𝑣 ∈ 𝑏0] ] ∗ [𝑑𝑡 (𝑏0) ],
where we put 𝐵𝑐𝑡 := [𝑑𝑡 (𝑏) | 𝑏 in 𝑐] (and analogously for
𝑠, 𝑡 ′). Now for 𝑖 = 1, . . . , 𝑛we have:𝑑𝑡 ′ (𝑏𝑖 ) = 𝑑𝑡 ′ (ℎ)+𝑑ℎ (𝑏𝑖 ) >
𝑑𝑡 (𝑏0) since as one sees from the expression of ℎ, we have
𝑑𝑡 ′ (ℎ) = 𝑑𝑡 (𝑏0) and 𝑑ℎ (𝑏𝑖 ) > 0. Also, it is easily under-
stood that for all 𝑏 occurring in 𝑐 , or occurring in 𝑠 , we
have: 𝑑𝑡 ′ (𝑏) = 𝑑𝑡 (𝑏). Finally, observe that since (𝑏1, . . . , 𝑏𝑛)
is a w.c. of 𝑏0, then: 𝑏 occurs in some 𝑣 ∈ 𝑏0 iff 𝑏 occurs
in some 𝑣 ∈ 𝑏𝑖 for some 𝑖 . And for all such 𝑏 we have:
𝑑𝑡 ′ (𝑏) = 𝑑𝑡 ′ (𝑣) +𝑑𝑣 (𝑏) > 𝑑𝑡 (𝑣) +𝑑𝑣 (𝑏) = 𝑑𝑡 (𝑏) since 𝑑𝑡 ′ (𝑣) =
𝑑𝑡 ′ (𝑏𝑖 ) > 𝑑𝑡 (𝑏0) = 𝑑𝑡 (𝑣). All these considerations precisely
mean m(𝑡) > m(𝑡 ′). □

Analogously we find:

Proposition 2.10. If 𝑡 →𝜆r 𝑡
′ + T then m(𝑡) > m(𝑡 ′).

However, only m(𝑡) is not enough to prove strong nor-
malization. In fact (reasoning similarly as before):
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𝑥 ⟨[𝑣]/𝑥⟩ = 𝑣 𝑦⟨1/𝑥⟩ = 𝑦 (𝑦 ≠ 𝑥) (𝜆𝑦.𝑡)⟨[®𝑢]/𝑥⟩ = 𝜆𝑦.𝑡 ⟨[®𝑢]/𝑥⟩
𝑥 ⟨1/𝑥⟩ = 𝑥 ⟨[𝑣,𝑤, ®𝑢]/𝑥⟩ = 0 𝑦⟨[𝑣, ®𝑢]/𝑥⟩ = 0 (𝑦 ≠ 𝑥) (𝜇𝛼.𝛽 |𝑡 |)⟨[®𝑢]/𝑥⟩ = 𝜇𝛼.𝛽 |𝑡 ⟨[®𝑢]/𝑥⟩|

(𝑡 [𝑣1, . . . , 𝑣𝑛])⟨[®𝑢]/𝑥⟩ =
∑

( [®𝑠 0 ],...,[®𝑠 𝑛 ] ) w.c. of [ ®𝑢 ]
!𝑡 ⟨[®𝑠 0]/𝑥⟩

[
𝑣1⟨[®𝑠 1]]/𝑥⟩, . . . , 𝑣𝑛 ⟨[®𝑠 𝑛]/𝑥⟩

]
.

Figure 1. Definition of linear substitution

⟨𝑥⟩𝛼 [𝑣, ®𝑢] = 0 ⟨𝑥⟩𝛼1 = 𝑥 ⟨𝜂 |𝑡 |⟩𝛼 [®𝑢] = 𝜂 |⟨𝑡⟩𝛼 [®𝑢] | (if 𝜂 ≠ 𝛼)

⟨𝜇𝛾 .𝜂 |𝑡 |⟩𝛼 [®𝑢] = 𝜇𝛾 .⟨𝜂 |𝑡 |⟩𝛼 [®𝑢] ⟨𝜆𝑦.𝑡⟩𝛼 [®𝑢] = 𝜆𝑦.⟨𝑡⟩𝛼 [®𝑢] ⟨𝛼 |𝑡 |⟩𝛼 [®𝑢] =
∑

( [ ®𝑤 1 ],[ ®𝑤 2 ] ) w.c. of [ ®𝑢 ]
𝛼 |

(
⟨𝑡⟩𝛼 [ ®𝑤 1]

)
[ ®𝑤 2] |

⟨𝑡 [𝑣1, . . . , 𝑣𝑛]⟩𝛼 [®𝑢] =
∑

( [ ®𝑤 0 ],...,[ ®𝑤𝑛 ] ) w.c. of [ ®𝑢 ]

(
⟨𝑡⟩𝛼 [ ®𝑤 0]

) [
⟨𝑣1⟩𝛼 [ ®𝑤 1], . . . , ⟨𝑣𝑛⟩𝛼 [ ®𝑤 𝑛]

]
.

Figure 2. Definition of linear named application

Proposition 2.11. If 𝑡 →𝜌r 𝑡 ′ + T then m(𝑡) ≥ m(𝑡 ′), and
there are cases in which the equality holds, such as (for 𝛽 ≠ 𝜂):
m(𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑥 | |) = 1 = m(𝜇𝛾 .𝜂 |𝑥 |) with 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑥 | | →𝜌r

𝜇𝛾 .𝜂 |𝑥 |.

That is why, in order to get a strongly normalising mea-
sure, we add another component:

Definition 2.12. We define the measure:

m̃(𝑡) := (m(𝑡), deg𝜇 (𝑡)) ∈ !N × N
ordered by the (well-founded) lexicographic order.

Corollary 2.13 (SN). If 𝑡 →r 𝑡 ′ + T then m̃(𝑡) > m̃(𝑡 ′).
Therefore, the resource reduction→r on sums is strongly nor-
malising.

Proof. The only case in which m(·) may remain constant
is along a 𝜌r-reduction, but in this case deg𝜇 (𝑡) strictly de-
creases. □

Before turning to the confluence, let us see some properties
of the measure m(·) that we will use in the following.

Lemma 2.14. Let 𝑐 = 𝑐L𝜉 M be a single-hole context and 𝑡 a
𝜆𝜇-term. Then: m(𝑐L𝑡 M) ≥ m(𝑡).

Proof. We have m(𝑐L𝑡 M) = 𝐴 ∗ [ deg𝜇 (𝑐L𝑡 M) − 𝑑𝑐L𝑡 M (𝑏) |
𝑏 in 𝑡 ] where 𝐴 := [ deg𝜇 (𝑐L𝑡 M) − 𝑑𝑐L𝑡 M (𝑏) | 𝑏 in 𝑐 ]. But
deg𝜇 (𝑐L𝑡 M) = deg𝜇 (𝑐) +deg𝜇 (𝑡) and, for all occurrence 𝑏 in 𝑡 ,
we have:𝑑𝑐L𝑡 M (𝑏) = 𝑑𝑡 (𝑏)+𝑑𝑐 (𝜉) ≤ 𝑑𝑡 (𝑏)+deg𝜇 (𝑐). Thus, for
all occurrence 𝑏 of bag in 𝑡 , we have: deg𝜇 (𝑐L𝑡 M)−𝑑𝑐L𝑡 M (𝑏) ≥
deg𝜇 (𝑡) − 𝑑𝑡 (𝑏) and this last integer is exactly a generic
element of m(𝑡) (if it is non-empty). Hence m(𝑐L𝑡 M) ≥ 𝐴 ∗
m(𝑡) ≥ m(𝑡). □

However, there are cases in which m(𝑐L𝑡 M) = m(𝑡) even
if 𝑐 ≠ 𝜉 . For example, taking 𝑐 = 𝜆𝑥 .𝜉 one has m(𝑐L𝑡 M) = 1 =
m(𝑡) for all 𝑡 ∈ 𝜆𝜇r not containing any bags. This is exactly

why, in the following, we will consider a slightly different
size, called ms (defined in Corollary 2.16).

Lemma 2.15. Let 𝑐 = 𝑐L𝜉 M be a single-hole resource context
and 𝑡, 𝑠 ∈ 𝜆𝜇. Then:

1. m(𝑐L𝑡 M) = (deg𝜇 (𝑡)+m(𝑐))∗ ((deg𝜇 (𝑐)−𝑑𝑐 (𝜉)+m(𝑡)).
2. If deg𝜇 (𝑠) ≤ deg𝜇 (𝑡) andm(𝑠) < m(𝑡), thenm(𝑐L𝑠 M) <

m(𝑐L𝑡 M).

Proof sketch. Easily checked, thanks to the clear fact that if
𝑏 is the occurrence of a bag in 𝑐 , then 𝑑𝑐L𝑡 M (𝑏) = 𝑑𝑐 (𝑏). □

In the following, we will need a strong normalising mea-
sure which, in addition, satisfies the properties of the follow-
ing Corollary 2.16. However, we have seen with some lines
above that m̃(·) is not adapted for that. This is why we oper-
ate a last slight modification. First, let us consider the size
sz(𝑡) ∈ N≥1 of resource 𝜆𝜇-terms: sz(𝑥) := 1, sz(𝜆𝑥.𝑡) :=

1 + sz(𝑡) =: sz(𝜇𝛼.𝛽 |𝑠 |), sz(𝑡0 [𝑡1, . . . , 𝑡𝑘 ]) := 1 + 𝑘 +
𝑘∑
𝑖=0

sz(𝑡𝑖 ).
Of course sz(𝑡) = 1 iff 𝑡 is a variable, and for all 𝑐 single-hole
context, sz(𝑐L𝑡 M) ≥ sz(𝑡) where the equality holds iff 𝑐 = 𝜉 .

Corollary 2.16. Define a measure ms(·) of 𝜆𝜇-terms as:

ms(𝑡) := (m̃(𝑡), sz(𝑡)) ∈ !N × N × N
ordered lexicographically (and thus well-founded). Then:

1. 𝑡 is a variable iffms(𝑡) takes its minimal value (1, 0, 1).
2. For all single-hole context 𝑐 = 𝑐L𝜉 M, we havems(𝑐L𝑡 M) ≥

ms(𝑡), and the equality holds iff 𝑐 = 𝜉 .
3. If 𝑡 →r 𝑡

′ + T thenms(𝑡) > ms(𝑡 ′).

2.2 Confluence
Due to the presence of three different reductions, the con-
fluence or our resource 𝜆𝜇-calculus is not easy. Another
difficulty is raised from the fact that we placed ourselves in a
qualitative setting, that is, with idempotent sums, so that we
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cannot always reduce a sum component-wise. This is why
we split the problem of the confluence in two steps: first,
we show that the quantitative resource 𝜆𝜇-calculus (that is,
where sum is not idempotent, and thus coefficients matter) is
confluent (Section 2.2.1); second, we show that its confluence
implies the confluence of the calculus with no coefficients
(Section 2.2.2). Before all that, let us precisely explain the
notion of quantitative resource calculus:

Definition 2.17. The quantitative resource 𝜆𝜇-calculusN⟨𝜆𝜇r⟩
is built as the qualitative one (2⟨𝜆𝜇r⟩, Definition 2.2) except
for taking now “+” non-idempotent. We define the three base-
case reductions→+

𝜆r
,→+𝜇r ,→+𝜌r in 𝜆𝜇r ×N⟨𝜆𝜇r⟩: the reduction

→+𝜌r is defined as usual, while→+
𝜆r
and→+𝜇r are defined as

in Definition 2.5, except for the fact that the linear substitution
and linear named application are replaced with a modified
version of them, denoted respectively 𝑡 ⟨[®𝑢]/𝑥⟩+ and ⟨𝑡⟩+𝛼 [®𝑢],
and defined in the next Definition 2.19. The contextual union
of the base-reductions→+

𝜆r
,→+𝜇r ,→+𝜌r forms a reduction→+r

on 𝜆𝜇r ×N⟨𝜆𝜇r⟩ which is extended to all N⟨𝜆𝜇r⟩ ×N⟨𝜆𝜇r⟩ by
taking {(𝑡 + S,T + S) | 𝑡 →+r T} (remark that we dropped the
annoying condition “𝑡 ∉ S”, since now coefficients matter; it is
the main reason why we turn to this calculus).

Notation 2.18. If [𝑢1, . . . , 𝑢𝑘 ] is a bag – with the written enu-
meration of (possibly multiple) elements – and𝑊 is a function
𝑊 : {1, . . . , 𝑘} −→ 𝐼 =: {𝑖0 < · · · < 𝑖𝑛}, we will sometimes
denote it by𝑊 : (𝑢1, . . . , 𝑢𝑘 ) −→ 𝐼 , or by𝑊 : (®𝑢) −→ 𝐼 .
When we use such notation we mean that𝑊 generates the w.c.
( [𝑢 𝑗 | 𝑗 ∈𝑊 −1 (𝑖0)], . . . , [𝑢 𝑗 | 𝑗 ∈𝑊 −1 (𝑖𝑛)]) of [𝑢1, . . . , 𝑢𝑘 ],
and denoted by ( [ ®𝑤 𝑖0 ], . . . , [ ®𝑤 𝑖𝑛 ]). In the case [®𝑢] = 1, we
write𝑊 : () −→ 𝐼 and we say that there is exactly one w.c.
generated by𝑊 , namely (1, (𝑛+1 times). . . , 1).

Definition 2.19. The quantitative version 𝑡 ⟨[®𝑢]/𝑥⟩+ of the
linear substitution is defined exactly as in Figure 1 but by
replacing the sum on all the ( [ ®𝑤 0], . . . , [ ®𝑤 𝑛]) w.c. of [®𝑢] with
the sum on all𝑊 : (®𝑢) −→ {0, . . . , 𝑛}, and by taking the above
w.c.’s as the ones generated by𝑊 . The quantitative version
⟨𝑡⟩+𝛼 [®𝑢] of the linear named application is defined exactly as
in Figure 2 but by replacing, in the case of an application, the
sum on all the ( [ ®𝑤 0], . . . , [ ®𝑤 𝑛]) w.c. of [®𝑢] with the sum on
all𝑊 : (®𝑢) −→ {0, . . . , 𝑛}, and by taking the above w.c.’s as
the ones generated by𝑊 . Analogously for the case of a named
term, where we use𝑊 : (®𝑢) −→ {1, 2}.

For instance: (𝜇𝛼.𝛼 |𝜇𝜂.𝛼 |𝑥 | |) [𝑦,𝑦] →+r 𝜇𝛼.𝛼 | (𝜇𝜂.𝛼 |𝑥1|) [𝑦,𝑦] |
+2 𝜇𝛼.𝛼 | (𝜇𝜂.𝛼 |𝑥 [𝑦] |) [𝑦] | + 𝜇𝛼.𝛼 | (𝜇𝜂.𝛼 |𝑥 [𝑦,𝑦] |)1|.

In the following, supp(T) ∈ 2⟨𝜆𝜇r⟩ is the support of a T ∈
N⟨𝜆𝜇r⟩, that is, the set of its addends (with no coefficients:
supp(T) is T when considered with an idempotent “+”).

Remark 2.20. It is clear by the definitions that if, for 𝑡 ∈
𝜆𝜇r, one has 𝑡 →r T (in 2⟨𝜆𝜇r⟩) and 𝑡 →+r S (in N⟨𝜆𝜇r⟩)
by reducing the same redex, then supp(S) = T. That is, the
two reductions only differ for the coefficients. Said differently,

the qualitative substitutions 𝑡 ⟨[®𝑢]/𝑥⟩ and ⟨𝑡⟩𝛼 [®𝑢] are just the
quantitative substitutions 𝑡 ⟨[®𝑢]/𝑥⟩+ and ⟨𝑡⟩+𝛼 [®𝑢] taken with
boolean coefficients.

Remark 2.21. Using the fact that the reduction→r is strongly
normalising in 𝜆𝜇r (Corollary 2.13), we can prove that the re-
duction →+r is strongly normaling in N⟨𝜆𝜇r⟩. It suffices to
extend the strongly normalising measure m̃(·) of 𝜆𝜇r (Defi-
nition 2.12) to N⟨𝜆𝜇r⟩ by setting m̃(T) := [m̃(𝑡) | 𝑡 ∈ T] ∈
!(!N × N), and use the multiset order.

Remark 2.22 (Embedding inside the differential 𝜆𝜇-calculus).
In [29], Vaux defines a differential 𝜆𝜇-calculus, let us call it
(𝜆𝜇𝜕,→𝜕) in this remark, and proves its confluence. Our re-
source 𝜆𝜇-calcului 2⟨𝜆𝜇r⟩ and N⟨𝜆𝜇r⟩ are strictly related to
it, as they translate into 𝜆𝜇𝜕 via4 (·)𝜕 : 𝜆𝜇r −→ 𝜆𝜇𝜕 defined as:
𝑥𝜕 := 𝑥, (𝜆𝑥.𝑡)𝜕 := 𝜆𝑥 .𝑡𝜕, (𝜇𝛼.𝛽 |𝑡 |)𝜕 := 𝜇𝛼.𝛽 |𝑡𝜕 |, (𝑡 [𝑢1, . . . , 𝑢𝑘 ])𝜕

:=
(
D𝑘 𝑡𝜕 • (𝑢𝜕

1 , . . . , 𝑢
𝜕
𝑘
)
)
0. We can extend it to sums, both in

2⟨𝜆𝜇r⟩ and in N⟨𝜆𝜇r⟩, by linearity. In the qualitative case
(that is, if we consider (·)𝜕 : 2⟨𝜆𝜇r⟩ −→ 𝜆𝜇𝜕), it is not a well-
behaved embedding, because it does not preserve reductions. On
the contrary, it does in the quantitative case (that is, if we con-
sider (·)𝜕 : N⟨𝜆𝜇r⟩ −→ 𝜆𝜇𝜕), in the sense that: if 𝑡 →+

𝜆𝜇r
T in

N⟨𝜆𝜇r⟩, then 𝑡𝜕 ↠𝜕 T
𝜕 in 𝜆𝜇𝜕 (“↠” is the reflexive transitive

closure of→).
One may wonder if it is possible to use the confluence of
(𝜆𝜇𝜕,→𝜕) to infer the confluence of our calculi. In fact, it is
possible to show that the local confluence of→+

𝜆𝜇r
follows from

the confluence of →𝜕 . However, as the reader has probably
noticed, we only talked about→+

𝜆𝜇r
, and not about the whole

→+r = →+
𝜆𝜇r
∪ →+𝜌r . This is simply because in [29] the 𝜌-

reduction is not considered. Remark that, even if it is possible
to prove the confluence of→𝜌r by itself, we cannot use it in or-
der to entail the confluence of→+r = →+

𝜆𝜇r
∪ →+𝜌r by invoking

the well-knownHindley-Rosen lemma. This is because→+𝜌r and
→+

𝜆𝜇r
do not commute, as the following example shows (where

𝛾 ≠ 𝜂 ≠ 𝛼): 𝜇𝛼.𝛼 | (𝜇𝛾 .𝜂 |𝑥 |)1| 𝜇r ←+ (𝜇𝛼.𝛼 |𝜇𝛾 .𝜂 |𝑥 | |)1 →+𝜌r

(𝜇𝛼.𝜂 |𝑥 |)1 →+𝜌r 𝜇𝛼.𝜂 |𝑥 |, but 𝜇𝛼.𝛼 | (𝜇𝛾 .𝜂 |𝑥 |)1| ̸→+𝜌r 𝜇𝛼.𝜂 |𝑥 |.
In the previous “non-reduction”, the blocked 𝜌-redex can be un-
blocked by performing a 𝜇-reduction (and the diagram closes).
O. Laurent suggests (private communication) that we could
still use the confluence of (𝜆𝜇𝜕,→𝜕) in order to obtain the con-
fluence of→+r = →+

𝜆𝜇r
∪ →+𝜌r passing through a factorization

lemma: if 𝑡 ↠+r T then 𝑡 ↠
+
𝜆𝜇r
T′ ↠+𝜌r T, for some T′.

2.2.1 Confluence of (N⟨𝜆𝜇r⟩,→+r ). We present here a
proof which essentially consists in closing the diagrams of
all the possible critical pairs.

4Here we are considering that the reader knowns the syntax of 𝜆𝜇𝜕 .
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Remark 2.23. We can extend the definition of linear substitu-
tion and linear named application to sums by linearity. Analo-
gously, the renaming of a sum T{𝛼/𝛽} is defined component-
wise. With these definitions in place one checks that base-step-
reduction lifts to sums, i.e.

(
𝜇𝛼.𝛽 |T|

)
[ ®U] ↠+𝜇r 𝜇𝛼. ⟨T⟩+𝛼 [ ®U]

and analogously for (𝜆𝑥 .T) [ ®U] and 𝜇𝛼.𝛽 |𝜇𝛾 .𝜂 |T| |. One can
also check that→+r on N⟨𝜆𝜇r⟩ is contextual.
Notation 2.24. In this section we will sometimes use the fol-
lowing notation: for 𝛼, 𝛽, 𝜂 names, we set 𝛿𝛼𝜂 (𝛽) to be 𝛼 if 𝛽 = 𝜂,
or 𝜂 otherwise.

The following is the crucial technical lemma.

Lemma 2.25. Let 𝑡, 𝑠 ∈ 𝜆𝜇r, 𝑥 a variable, 𝛼, 𝛽 names and [®𝑢]
a bag. If 𝑠 →+r S then:

1. 𝑠{𝛼/𝛽} ↠+r S{𝛼/𝛽}
2. 𝑡 ⟨[𝑠, ®𝑢]/𝑥⟩+ ↠+r 𝑡 ⟨[S, ®𝑢]/𝑥⟩+
3. 𝑠 ⟨[®𝑢]/𝑥⟩+ ↠+r S⟨[®𝑢]/𝑥⟩+
4. ⟨𝑡⟩+𝛼 [𝑠, ®𝑢] ↠+r ⟨𝑡⟩+𝛼 [S, ®𝑢]
5. 𝜇𝛼.⟨𝛽 |𝑡 |⟩+𝛼 [𝑠, ®𝑢] ↠+r 𝜇𝛼.⟨𝛽 |𝑡 |⟩+𝛼 [S, ®𝑢]
6. ⟨𝑠⟩+𝛼 [®𝑢] ↠+r ⟨S⟩+𝛼 [®𝑢].
7. 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢] ↠+r 𝜇𝛼.⟨𝛽 |S|⟩+𝛼 [®𝑢].
Before proving it, let us remark that, in the qualitative set-

ting, it is false. For instance, if 𝑠 →r 𝑠
′, then (𝑥 [𝑥])⟨[𝑠, 𝑠]/𝑥⟩ =

𝑠 [𝑠] ↠̸r 𝑠 [𝑠′] + 𝑠′ [𝑠] = (𝑥 [𝑥])⟨[𝑠, 𝑠′]/𝑥⟩. In the quantitative
case, instead, (𝑥 [𝑥])⟨[𝑠, 𝑠]/𝑥⟩+ = 2 𝑠 [𝑠] ↠+r 𝑠 [𝑠′] + 𝑠′ [𝑠] =
(𝑥 [𝑥])⟨[𝑠, 𝑠′]/𝑥⟩+.

Proof sketch of Lemma 2.25. 1). Induction on 𝑠 . The only in-
teresting cases are:

- Case 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ |: we have two subcases: Subcase 𝑠 →+r S
is performed by reducing 𝑠′: easy by inductive hypothesis.
Subcase 𝑠′ = 𝜇𝛾 ′ .𝜂′ |𝑠′′ | and 𝑠 →+r S is performed by re-
ducing its leftmost 𝜌-redex: then 𝑠 = 𝜇𝛾 .𝜂 |𝜇𝛾 ′ .𝜂′ |𝑠′′ | |, S =

𝜇𝛾 .𝜂′ |𝑠′′ |{𝜂/𝛾 ′} and we have the four sub-subcases 𝜂 = 𝛽

and 𝜂′ = 𝛽 , or 𝜂 = 𝛽 and 𝜂′ ≠ 𝛽 , or 𝜂 ≠ 𝛽 and 𝜂′ = 𝛽 , or
𝜂 ≠ 𝛽 and 𝜂′ ≠ 𝛽 . They are all similar, let us only show the
second one, for which we have:
S{𝛼/𝛽} = 𝜇𝛾 .𝜂′ |𝑠′′ |{𝛼/𝛽, 𝛼/𝛾 ′} = 𝜇𝛾 .𝛿𝛼

𝜂′ (𝛾
′ ) |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}|

𝑠{𝛼/𝛽} = 𝜇𝛾 .𝛼 |𝜇𝛾 ′ .𝜂′ |𝑠′′{𝛼/𝛽}| | →+𝜌 𝜇𝛾 .𝜂′ |𝑠′′{𝛼/𝛽}|{𝛼/𝛾 ′}
= 𝜇𝛾 .𝛿𝛼

𝜂′ (𝛾
′ ) |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}| = S{𝛼/𝛽}.

- Case 𝑠 = 𝑠′ [®𝑣]: we have four subcases depending on how
the reduction 𝑠 →+r S is performed. The only interesting one
is the subcase 𝑠′ = 𝜇𝛾 .𝜂 |𝑠′′ | and 𝑠 →+r S is performed by re-
ducing the 𝜇-redex 𝑠 , for which we have: S = 𝜇𝛾 .⟨𝜂 |𝑠′′ |⟩+𝛾 [®𝑣]
and 𝑠{𝛼/𝛽} = (𝜇𝛾 .𝛿𝛼𝜂 (𝛽 ) |𝑠′′{𝛼/𝛽}|) [®𝑣{𝛼/𝛽}] →𝜇r -reduces to
𝜇𝛾 .⟨𝛿𝛼𝜂 (𝛽 ) |𝑠′′{𝛼/𝛽}|⟩+𝛾 [®𝑣{𝛼/𝛽}] which in turn coincides with
the sum 𝜇𝛾 .⟨𝜂 |𝑠′′ |{𝛼/𝛽}⟩+𝛾 [®𝑣{𝛼/𝛽}] = S{𝛼/𝛽}.
(2). Induction on 𝑡 . The only non-trivial case is when 𝑡 is

𝑣0 [𝑣1, . . . , 𝑣𝑛]. In this case we can write 𝑡 ⟨[𝑠, ®𝑢]/𝑥⟩+ as:∑︁
𝑊

𝑛∑︁
𝑗=0
( 𝑣0⟨[ ®𝑤 0] ∗ [𝑠] 𝑗0/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤

𝑖 ] ∗ [𝑠] 𝑗
𝑖
/𝑥⟩, . . . ]

where 𝑊 : (®𝑢) −→ {1, . . . , 𝑛} and we put [𝑠] 𝑗
𝑖
to be the

singleton multiset [𝑠] if 𝑖 = 𝑗 , and the empty mulitset 1 if
𝑖 ≠ 𝑗 .. Fix now a𝑊 : (®𝑢) −→ {1, . . . , 𝑛} (together with its
generated w.c.) and consider each of the 𝑛 + 1 elements of
the sum on 𝑗 . We write the case for 𝑗 = 0, but the other cases
are exactly the same. Since 𝑗 = 0, the element is ( 𝑣0⟨[ ®𝑤 0] ∗
[𝑠]/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤 𝑖 ]/𝑥⟩, . . . ] and by inductive hypothesis
it↠+r -reduces to ( 𝑣0⟨[ ®𝑤 0] ∗ [S]/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤 𝑖 ]/𝑥⟩, . . . ] .
Now summing up all the elements for 𝑗 = 0, . . . , 𝑛 and𝑊 :
(®𝑢) −→ {1, . . . , 𝑛} we obtain the following sum:

∑︁
𝑊

𝑛∑︁
𝑗=0
( 𝑣0⟨[ ®𝑤 0] ∗ [S] 𝑗0/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤

𝑖 ] ∗ [S] 𝑗
𝑖
/𝑥⟩, . . . ] .

which can be shown to be the desired ( 𝑣0 [𝑣1, . . . , 𝑣𝑛] ) ⟨[S, ®𝑢]/𝑥⟩+.
(3). Induction on 𝑠 . We only show the case 𝑠 = 𝜇𝛼.𝛽 |𝑠′ |,

which splits in two subcases: the subcase where 𝑠 →+r S is
performed by reducing 𝑠′ is immediate. The subcase where
𝑠′ = 𝜇𝛾 .𝜂 |𝑠′′ | and 𝑠 →+r S is performed by reducing its left-
most 𝜌-redex goes as follows: we have S = 𝜇𝛼.𝜂 |𝑠′′ |{𝛽/𝛾}
and
𝑠 ⟨[®𝑢]/𝑥⟩+ = 𝜇𝛼.𝛽 |𝜇𝛾 .𝜂 |𝑠′′⟨[®𝑢]/𝑥⟩+ | |
→𝜌r 𝜇𝛼.𝜂 |𝑠′′⟨[®𝑢]/𝑥⟩+ |{𝛽/𝛾} = 𝜇𝛼.𝜂 |𝑠′′ |⟨[®𝑢]/𝑥⟩+{𝛽/𝛾}
= 𝜇𝛼.𝜂 |𝑠′′ |{𝛽/𝛾}⟨[®𝑢]/𝑥⟩+ = S⟨[®𝑢]/𝑥⟩+.

(4). Induction on 𝑡 . Similar to point (2).
(5). It is easy discriminating the cases 𝛼 = 𝛽 and 𝛼 ≠ 𝛽

and concluding by point (4).
(6). Induction on 𝑠 ∈ 𝜆𝜇. The only interesting cases are:
- Case 𝑠 = 𝜇𝛽.𝛾 |𝑠′ |. We have two subcases: the subcase

where 𝑠 →+r S is performed by reducing 𝑠′, so S = 𝜇𝛽.𝛾 |S′ |
with 𝑠′ →r S

′, is easy by inductive hypothesis (however
remark that we cannot immediately apply the inductive hy-
pothesis on 𝛾 |𝑠′ |, simply because the named term 𝛾 |𝑠′ | ∉ 𝜆𝜇r).
The subcase where 𝑠′ = 𝜇𝛾 ′ .𝜂 |𝑠′′ | (with 𝛾 ≠ 𝛾 ′) and 𝑠 →+r S is
performed by reducing its leftmost 𝜌-redex goes as follows:
we have S = 𝜇𝛽.𝜂 |𝑠′′ |{𝛾/𝛾 ′} and we split in two sub-subcases
depending whether 𝛼 ≠ 𝛾 or 𝛼 = 𝛾 . Let us only show this
last sub-subcase: We have (putting𝑊 : (®𝑢) −→ {1, 2}):

⟨𝑠⟩+𝛼 [®𝑢] =
∑
𝑊

𝜇𝛽.𝛼 | ( 𝜇𝛾 ′ .⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1] ) [ ®𝑤 2] |

↠+𝜇r
∑
𝑊

𝜇𝛽.𝛼 |𝜇𝛾 ′ .⟨⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1]⟩+
𝛾 ′ [ ®𝑤 2] |

↠+𝜌r
∑
𝑊

𝜇𝛽.⟨⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1]⟩+
𝛾 ′ [ ®𝑤 2] {𝛼/𝛾 ′}

=
∑
𝑊

⟨⟨𝜇𝛽.𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1]⟩+
𝛾 ′ [ ®𝑤 2] {𝛼/𝛾 ′}

= ⟨𝜇𝛽.𝜂 |𝑠′′ | {𝛼/𝛾 ′}⟩+𝛼 [®𝑢]
= ⟨S⟩+𝛼 [®𝑢] .

- Case 𝑠 = 𝑠′ [𝑣1, . . . , 𝑣𝑛]: we have four subcases depending
on how the reduction 𝑠 →+r S is performed. We only show
the one in which 𝑠′ = 𝜇𝛾 .𝜂 |𝑠′′ | (with 𝛾 ≠ 𝛼) and 𝑠 →+r S is
performed by reducing the 𝜇-redex 𝑠 . In this subcase we have



Haifa’22, 2–5 August 2022, Haifa, Israel Davide Barbarossa

S = 𝜇𝛾 .⟨𝜂 |𝑠′′ |⟩+𝛾 [®𝑣] and (putting𝑊 : (®𝑢) −→ {0, . . . , 𝑛}):
⟨𝑠⟩+𝛼 [®𝑢] =

∑
𝑊

(⟨𝜇𝛾 .𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 0]) [. . . , ⟨𝑣𝑖 ⟩+𝛼 [ ®𝑤 𝑖 ], . . . ]

↠+
𝜇r 𝜇𝛾 .

∑
𝑊

⟨⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 0]⟩+𝛾 [. . . , ⟨𝑣𝑖 ⟩+𝛼 [ ®𝑤 𝑖 ], . . . ]

= 𝜇𝛾 .⟨⟨𝜂 |𝑠′′ |⟩+𝛾 [®𝑣]⟩+𝛼 [®𝑢]
= ⟨S⟩+𝛼 [®𝑢] .

(7). It is immediate by discriminating the cases 𝛼 = 𝛽 and
𝛼 ≠ 𝛽 and then concluding by point (6). □

Proposition 2.26. The reduction→+r is locally confluent in
N⟨𝜆𝜇r⟩.

Proof sketch. We show, by induction on a single-hole re-
source context 𝑐 , that if 𝑡 →+baser T and 𝑐L𝑡 M →+r T2, then
there is T′ ∈ N⟨𝜆𝜇r⟩ s.t. 𝑐LTM ↠+r T′ +r↞ T2. The proof cru-
cially uses Lemma 2.25 and Remark 2.23. All the cases of the
induction are either easy by induction, or they reduce to the
case 𝑐 = 𝜉 , so this is the only one we sketch below.
We have 𝑐L𝑡 M = 𝑡 →+baser T and we only have the three

base-cases of Definition 2.17.
Case 𝑡 = (𝜆𝑥 .𝑠) [®𝑢] and T = 𝑠 ⟨[®𝑢]/𝑥⟩+. Then 𝑐L𝑡 M = 𝑡 →+r

T2 (on a different redex than 𝑡 ) can only be performed either
by reducing 𝑠 , or by reducing an element𝑤 of [®𝑢]. We have
thus the two easy respective diagrams.

Case 𝑡 = (𝜇𝛼.𝛽 |𝑠 |) [®𝑢] and T = 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢]. Then 𝑐L𝑡 M =
𝑡 →+r T2 (on a different redex than 𝑡 ) can only be performed
either by reducing 𝑠 , giving rise to an easy diagram, or by
reducing an element𝑤 of [®𝑢], giving rise to an easy diagram,
or if 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ | and we reduce the 𝜌-redex ...𝛽 |𝜇𝛾 . ...|. In
the latter case we split into the case 𝛼 ≠ 𝛽 , the case 𝛼 =

𝛽,𝛾 ≠ 𝜂, 𝜂 = 𝛼 , the case 𝛼 = 𝛽,𝛾 ≠ 𝜂, 𝜂 ≠ 𝛼 , and the case 𝛼 =

𝛽, 𝜂 = 𝛾 (with necessarily 𝛾 ≠ 𝛼). These four cases respec-
tively correspond to four non-trivial (but similar) diagrams,
of which we only show the one corresponding to the case
𝛼 = 𝛽,𝛾 ≠ 𝜂, 𝜂 = 𝛼 : (𝜇𝛼.𝛼 |𝜇𝛾 .𝛼 |𝑠′ | |) [®𝑢] reduces both to U :=
𝜇𝛼.⟨𝛼 |𝜇𝛾 .𝛼 |𝑠′ | |⟩+𝛼 [®𝑢] and to 𝑣 := (𝜇𝛼.𝛼 |𝑠′{𝛼/𝛾}|) [®𝑢]. Now,
𝑣 →+r 𝜇𝛼.⟨𝛼 |𝑠′{𝛼/𝛾}|⟩+𝛼 [®𝑢] =

∑
𝑊

𝜇𝛼.𝛼 | (⟨𝑠′{𝛼/𝛾}⟩+𝛼 [ ®𝑤 0]) [ ®𝑤 1] |

=: V (with𝑊 : (®𝑢) → {1, 2}), while it is easy to see that
(with𝑊 : (®𝑢) → {1, 2}, 𝐷 : ( ®𝑤 0) → {1, 2})U↠+r -reduces to∑
𝑊

∑
𝐷

𝜇𝛼.𝛼 |𝜇𝛾 .𝛼 |⟨(⟨𝑠′⟩+𝛼 [ ®𝑑 0]) [ ®𝑑 1]⟩+𝛾 [ ®𝑤 1] | | which in turn↠+r -

reduces to
∑
𝑊

∑
𝐷

𝜇𝛼.𝛼 |⟨(⟨𝑠′⟩+𝛼 [ ®𝑑 0]) [ ®𝑑 1]⟩+𝛾 [ ®𝑤 1] |{𝛼/𝛾} =: U′.
We can show that V = U′, so the diagram is closed.

Case 𝑡 = 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑠 | | and T = 𝜇𝛾 .𝜂 |𝑠 |{𝛼/𝛽}. Then 𝑐L𝑡 M =
𝑡 →+r T2 (on a different redex than 𝑡 ) can be only performed
either by reducing 𝑠 , which gives an easy diagram, or if
𝑠 = 𝜇𝛾 ′ .𝜂′ |𝑠′ | and we reduce the 𝜌-redex ...𝜂 |𝜇𝛾 ′ . ...|. Putting
𝛿0 := 𝛿𝛼𝜂 (𝛽), 𝛿 ′1 := 𝛿𝛼

𝜂′ (𝛽), 𝛿1 := 𝛿
𝛿0
𝛿 ′1
(𝛾 ′), 𝛿 ′2 := 𝛿

𝜂

𝜂′ (𝛾 ′) and
𝛿2 := 𝛿𝛼

𝛿 ′2
(𝛽), the latter case gives the following diagram:

𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝜇𝛾 ′ .𝜂′ |𝑠′ | | | reduces both toU := 𝜇𝛾 .𝛿0 |𝜇𝛾 ′ .𝛿 ′1 |𝑠
′{𝛼/𝛽}| |

and to V := 𝜇𝛾 .𝛼 |𝜇𝛽.𝛿 ′2 |𝑠
′{𝜂/𝛾 ′}| |, while U ↠+r -reduces to

𝜇𝛾 .𝛿1 |𝑠′{𝛼/𝛽}{𝛿0/𝛾 ′}| andV↠+r -reduces to 𝜇𝛾 .𝛿2 |𝑠′{𝜂/𝛾 ′}{𝛼/𝛽}|.
We can show those sums equal, so the diagram is closed. □

Corollary 2.27. The reduction→+r is confluent in N⟨𝜆𝜇r⟩.
Proof. By the well-known Newman Lemma, thanks to Re-
mark 2.21 and Proposition 2.26. □

2.2.2 From the confluence of (N⟨𝜆𝜇r⟩,→+r ) to the con-
fluence of (2⟨𝜆𝜇r⟩,→r).
Definition 2.28. The reduction⇒⊆ N⟨𝜆𝜇r⟩ × N⟨𝜆𝜇r⟩ is de-
fined as the contextual closure of the relation:

{(𝑚 𝑡 + S,𝑚 T + S) | 𝑚 ∈ N, 𝑡 →+r T, 𝑡 ∉ supp(S)}.
We have⇒⊆↠+r . It is also easily seen that if T→r S in

2⟨𝜆𝜇r⟩, then for all𝑚𝑡 ∈ N (with 𝑡 ∈ T), we have ∑
𝑡 ∈T

𝑚𝑡𝑡 ⇒
S′ (in N⟨𝜆𝜇r⟩), with supp(S′) = S.
Corollary 2.29. The reduction→r in 2⟨𝜆𝜇r⟩ is locally con-
fluent.

Proof. Let T1 r← 𝑡 →r T2 in 2⟨𝜆𝜇r⟩. Since we know that→r
is strongly normalising (Corollary 2.13), there are (in 2⟨𝜆𝜇r⟩)
reductions T1 ↠r S1 and T2 ↠r S2, with S1, S2 r-normal.
Therefore we have (in N⟨𝜆𝜇r⟩) reductions 𝑡 ⇒ · · · ⇒ S′1 and
𝑡 ⇒ · · · ⇒ S′2, for some S′1, S

′
2 ∈ N⟨𝜆𝜇r⟩ s.t. supp(S′𝑖 ) = S𝑖 .

But then, since S𝑖 is r-normal, S′𝑖 must be→+r -normal. Now
because of Corollary 2.27, it must be S′1 = S

′
2, and therefore

S1 = supp(S′1) = supp(S′2) = S2. Hence, we found a common
reduct of T1,T2. □

Corollary 2.30 (Confluence). The reduction→r is confluent
on 2⟨𝜆𝜇r⟩.
Proof. ByNewman Lemma, thanks to Corollary 2.13 andCorol-
lary 2.29. □

3 Qualitative Taylor expansion
3.1 Crucial properties
The calculus and its resource sensitive version are almost
the same; the Taylor expansion map makes us pass from one
to the other.

Definition 3.1. The (qualitative) Taylor expansion is the map
T : 𝜆𝜇 → P(𝜆𝜇r) defined as:

T (𝑥) := {𝑥} T (𝜆𝑥 .𝑀) := {𝜆𝑥 .𝑡 | 𝑡 ∈ T (𝑀)}
T (𝜇𝛼.𝛽 |𝑀 |) := {𝜇𝛼.𝛽 |𝑡 | | 𝑡 ∈ T (𝑀)}
T (𝑀𝑁 ) := {𝑡 [®𝑢] | 𝑡 ∈ T (𝑀), [®𝑢] ∈ !T (𝑁 )}.

Since →r is confluent and strongly normalising, all re-
source terms 𝑡 have a unique 𝑟 -normal form nf r (𝑡) ∈ 2⟨𝜆𝜇r⟩
(it can be 0). Therefore, for all 𝑀 ∈ 𝜆𝜇 there always exists
NFT (𝑀) := ⋃

𝑡 ∈T (𝑀 )
nf r (𝑡) ⊆ 𝜆𝜇r (in general infinite, thus

not a sum). This allows to endow 𝜆𝜇 with a preorder:
𝑀 ≤ 𝑁 iff NFT (𝑀) ⊆ NFT (𝑁 ).

Theorem 3.2 (Monotonicity). For𝐶 a context, the map𝐶L ·M :
𝜆𝜇 → 𝜆𝜇 is monotone w.r.t. ≤.
Proof. Induction on 𝐶 , as in [1]. □
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The following technical lemma says that Taylor expansion
behaves well w.r.t. substitutions.

Lemma 3.3. One has:

1. T (𝑀{𝛼/𝛽}) = T (𝑀){𝛼/𝛽}
2. T (𝑀{𝑁 /𝑥}) = ⋃

𝑡 ∈T (𝑀 )

⋃
®𝑢∈ ! T(𝑁 )

𝑡 ⟨[®𝑢]/𝑥⟩

3. T ((𝑀)𝛼𝑁 ) =
⋃

𝑡 ∈T (𝑀 )

⋃
®𝑢∈ ! T(𝑁 )

⟨𝑡⟩𝛼 [®𝑢] .

Proof sketch. (1). Straightforward induction on𝑀 .
(2). Induction on𝑀 as one does for 𝜆-calculus. The only new
case is𝑀 = 𝜇𝛽.𝛼 |𝑃 | but it is done straightforwardly exactly
as the case𝑀 = 𝜆𝑥.𝑃 .
(3). Induction on𝑀 . Not more difficult than (2). □

The following important “simulation property” says in
which sense the elements of T (𝑀) approximate𝑀 .

Proposition 3.4. If𝑀 →base 𝑁 , then:

1. for all 𝑠 ∈ T (𝑀) there exist T ⊆ T (𝑁 ) s.t. 𝑠 ↠r T
2. for all 𝑠′ ∈ T (𝑁 ) there is 𝑠 ∈ T (𝑀) s.t. 𝑠 ↠r 𝑠

′ + T for
some sum T ⊆ T (𝑁 ).

Furthermore, the same property lifts to all→, that is, if𝑀 → 𝑁

then point (1) and (2) hold.

Proof sketch. Points 1) and 2) are easy using Lemma 3.3. The
“furthermore” part is by induction on the single-hole context
𝐶 s.t.𝑀 = 𝐶L𝑀 ′ M, 𝑁 = 𝐶L𝑁 ′ M and𝑀 ′ →base 𝑁

′. □

The following technical lemma is an adaptation of [11,
Theorem 20].

Lemma3.5. Let 𝑃,𝑄 be 𝜆𝜇-terms, 𝑝, 𝑝′ ∈ T (𝑃) and [ ®𝑑], [ ®𝑑 ′] ∈
!T (𝑄). Then 𝑝 = 𝑝′ and [ ®𝑑] = [ ®𝑑 ′] are entailed by any of
the following three5 conditions:

1. if 𝑝 ⟨[ ®𝑑]/𝑥⟩ ∩ 𝑝′⟨[ ®𝑑 ′]/𝑥⟩ ≠ ∅
2. if ⟨𝑝⟩𝛾 [ ®𝑑] ∩ ⟨𝑝′⟩𝛾 [ ®𝑑 ′] ≠ ∅
3. if ⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑] ∩ ⟨𝜂 |𝑝′ |⟩𝛾 [ ®𝑑 ′] ≠ ∅.

The following “non-interference property” (Theorem 3.6)
was first proved by Ehrhard and Regnier in [11, Theorem 22]
for the 𝜆-calculus. It is known that it fails in MELL. A natural
question, to which we do not have an answer yet, is what
is the threshold, between 𝜆-calculus and MELL, where this
property starts failing. It is important also because somehow
it is linked to the possibility of defining a coherence on re-
source terms for which Taylor expansion is a maximal clique.
We show below that the result holds in 𝜆𝜇-calculus.

Theorem 3.6. If 𝑡, 𝑠 ∈ T (𝑀), 𝑡 ≠ 𝑠 , then nf r (𝑡) ∩nf r (𝑠) = ∅.

5Remark that point 3. (used in the proof of Theorem 3.6) is not an inductive
step of point 2., simply because 𝜂 |𝑝 | ∉ 𝜆𝜇r. Therefore we treat is separately.
This is due to the fact that we are in 𝜆𝜇-calculus and not in Saurin’s Λ𝜇-
calculus.

Proof. By induction on ms(𝑡) we prove that for all 𝑠 ∈ 𝜆𝜇r,
if 𝑡, 𝑠 ∈ T (𝑀) for some𝑀 ∈ 𝜆𝜇, and if there is ℎ ∈ nf r (𝑡) ∩
nf r (𝑠), then 𝑡 = 𝑠 .

Casems(𝑡) = (1, 0, 1). Then (Corollary 2.16) 𝑡 is a variable,
thus𝑀 is the same variable and therefore 𝑠 = 𝑡 .

Casems(𝑡) > (1, 0, 1). By Lemma 1.4,𝑀 has shape:

𝑀 = 𝜆®𝑥1𝜇𝛼1 .𝛽1 |. . . 𝜆®𝑥𝑘𝜇𝛼𝑘 .𝛽𝑘 |𝑅𝑄1 . . . 𝑄𝑛 | |

for 𝑅 either a variable, or a 𝜆-redex or a 𝜇-redex. Since
the series of 𝜆 and 𝜇 abstractions (with their respective
namings) will play no role in the following, in this proof
we shorten 𝜆®𝑥1𝜇𝛼1.𝛽1 |. . . 𝜆®𝑥𝑘𝜇𝛼𝑘 .𝛽𝑘 |. . .| | to just ®𝜆𝜇 |. . .|. So:
𝑡 = ®𝜆𝜇 |𝑡 ′ [®𝑢 1] . . . [®𝑢 𝑛] | and 𝑠 = ®𝜆𝜇 |𝑠′ [®𝑣 1] . . . [®𝑣 𝑛] | for 𝑡 ′, 𝑠′ ∈
T (𝑅) and [®𝑢 𝑖 ], [®𝑣 𝑖 ] ∈ !T (𝑄𝑖 ). We have now three subcases
depending on the shape of 𝑅.
Subcase 𝑅 variable, say 𝑅 = 𝑥 . Then 𝑡 ′ = 𝑠′ = 𝑥 . W.l.o.g.

𝑛 ≥ 1, otherwise it is trivial that 𝑡 = 𝑠 . Now say [®𝑢 𝑖 ] =:
[𝑢 𝑖

1 , . . . , 𝑢
𝑖
𝑚𝑖
] and [®𝑣 𝑖 ] =: [𝑣 𝑖1 , . . . , 𝑣 𝑖𝑚′

𝑖

] for 𝑖 = 1, . . . , 𝑛. By

confluence we have ℎ ∈ nf r ( ®𝜆𝜇 |𝑥 nf r ( [®𝑢 1]) . . . nf r ( [®𝑢 𝑛]) |),
so ℎ ∈ nf r ( ®𝜆𝜇 |𝑥 [ ®𝑑 1] . . . [ ®𝑑 𝑛] |) for some 𝑑 𝑖

𝑗 ∈ nf r (𝑢 𝑖
𝑗 ). Sim-

ilarly, we get: ℎ ∈ nf r ( ®𝜆𝜇 |𝑥 [ ®𝑑
′ 1] . . . [ ®𝑑 ′ 𝑛] |) for some 𝑑 ′ 𝑖𝑗 ∈

nf r (𝑣 𝑖𝑗 ). So it must be𝑚𝑖 =𝑚′𝑖 (𝑖 = 1, . . . , 𝑛) and:

ℎ = ®𝜆𝜇
′
|𝑥 [𝑑11, . . . , 𝑑1𝑚1 ] · · · [𝑑

𝑛
1 , . . . , 𝑑

𝑛
𝑚𝑛
] |

for some head ®𝜆𝜇
′
, some 𝑑𝑖𝑗 ∈ nf r (𝑢𝑖𝑗 ) ∩ nf r (𝑣𝑖𝜎𝑖 ( 𝑗 ) ) and

permutations 𝜎𝑖 on 𝑚𝑖 elements. But 𝑢𝑖𝑗 , 𝑣
𝑖
𝑗 ∈ T (𝑄𝑖 ) and

ms(𝑢𝑖𝑗 ) < ms(𝑡) since 𝑢𝑖𝑗 is a strict subterm of 𝑡 . So we
can apply the inductive hypothesis to each 𝑢𝑖𝑗 and obtain
𝑢𝑖𝑗 = 𝑣𝑖

𝜎𝑖 ( 𝑗 ) . Hence, 𝑡 = 𝑠 .
Subcase 𝑅 = (𝜆𝑦.𝑃)𝑁 . It is the same argument as the

following subcase, so we skip it.
Subcase 𝑅 = (𝜇𝛾 .𝜂 |𝑃 |)𝑁 . Then 𝑡 ′ = (𝜇𝛾 .𝜂 |𝑝 |) [ ®𝑑] and 𝑠′ =
(𝜇𝛾 .𝜂 |𝑝′ |) [ ®𝑑 ′] for 𝑝, 𝑝′ ∈ T (𝑃) and [ ®𝑑], [ ®𝑑 ′] ∈ !T (𝑁 ). By
confluence on 𝜆𝜇r we have:

nf r (𝑡) = nf r ( ®𝜆𝜇 | (𝜇𝛾 .⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑]) [®𝑢 1] . . . [®𝑢 𝑛] |) .

So there is ℎ1 ∈ 𝜇𝛾 .⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑] s.t. ℎ ∈ nf r (ℎ̃1) where: ℎ̃1 :=
®𝜆𝜇 |ℎ1 [®𝑢 1] . . . [®𝑢 𝑛] |.Analogouslywe find aℎ2 ∈ 𝜇𝛾 .⟨𝜂 |𝑝′ |⟩𝛾 [ ®𝑑 ′]
s.t. ℎ ∈ nf r (ℎ̃2), where: ℎ̃2 := ®𝜆𝜇 |ℎ2 [®𝑣 1] . . . [®𝑣 𝑛] |. By Lemma
3.3 we have ℎ1, ℎ2 ∈ T (𝜇𝛾 .(𝜂 |𝑃 |)𝛾𝑁 ) and so ℎ̃1, ℎ̃2 belong
to T ( ®𝜆𝜇 | (𝜇𝛾 .(𝜂 |𝑃 |)𝛾𝑁 )𝑄1 · · ·𝑄𝑛 |). This and the fact that
ℎ ∈ nf r (ℎ̃1)∩nf r (ℎ̃2) mean that ℎ̃1 satisfies both the hypothe-
ses of the inductive hypothesis. Moreover, since 𝑡 ′ →𝜇r ℎ1+T
for some sum T, then m(ℎ1) < m(𝑡 ′). And since the number
of 𝜇’s is constant under 𝜇-reduction, deg𝜇 (𝑡 ′) = deg𝜇 (ℎ1).
Therefore we can apply Lemma 2.15(2) and obtain: m(ℎ̃1) =
m( ®𝜆𝜇 |ℎ1 [®𝑢 1] . . . [®𝑢 𝑛] |) < m( ®𝜆𝜇 |𝑡 ′ [®𝑢 1] . . . [®𝑢 𝑛] |) = m(𝑡).
So ms(ℎ̃1) < ms(𝑡) and we can safely apply the inductive
hypothesis obtaining ℎ̃1 = ℎ̃2. Looking at the definition of
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ℎ̃1, ℎ̃2, we get ℎ1 = ℎ2 as well as [®𝑢 𝑖 ] = [®𝑣 𝑖 ] (𝑖 = 1, . . . , 𝑛).
But now we have:

𝜇𝛾 .⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑] ∋ ℎ1 = ℎ2 ∈ 𝜇𝛾 .⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑 ′]

so Lemma 3.5 gives 𝑝 = 𝑝′ and [ ®𝑑] = [ ®𝑑 ′], i.e. 𝑡 ′ = 𝑠′. If we
look at the shape of 𝑡, 𝑠 , this last information together with
[®𝑢 1] = [®𝑣 1], . . . , [®𝑢 𝑛] = [®𝑣 𝑛], precisely means 𝑡 = 𝑠 . □

We conclude with a useful property (Corollary 3.8). It
follows from the following proposition, which in turn easily
follows by Lemma 3.3.

Proposition 3.7. If T (𝑀) ∋ 𝑡 →base T
′ then there is 𝑁 ∈ 𝜆𝜇

s.t. T′ ⊆ T (𝑁 ) and𝑀 → 𝑁 .

Corollary 3.8. For all T ⊆ T (𝑀), there exist 𝑁 ∈ 𝜆𝜇 s.t.
𝑀 ↠ 𝑁 and nf r (T) ⊆ T (𝑁 ).

Proof sketch. One first generalises Proposition 3.7 to sums
(instead of a term 𝑡 in the statement); then, we prove the
desired result by induction on the length of a maximal re-
duction T↠r nf r (T). □

3.2 The 𝜆𝜇-theory =𝜏

Mimicking the definitions for 𝜆-calculus we say that:

Definition 3.9. 1. An equivalence R on 𝜆𝜇 is a congru-
ence iff R is contextual.

2. A congruence R is a 𝜆𝜇-theory iff R ⊇ =𝜆𝜇𝜌 .
3. The term algebra of a 𝜆𝜇-theory R is the quotient 𝜆𝜇/R .

A 𝜆𝜇-theory R is non-trivial iff 𝜆𝜇/R≠ {∗}.

It is clear that =𝜆𝜇𝜌 is a 𝜆𝜇-theory. Now fix the equivalence
𝑀 =𝜏 𝑁 iff NFT (𝑀) = NFT (𝑁 ). Actually, =𝜏 is a non-trivial
𝜆𝜇-theory. In fact, the contextuality follows immediately
from the Theorem 3.2; the fact that it contains =𝜆𝜇𝜌 easily
follows from confluence and Proposition 3.4; and it is clearly
non-trivial: 𝜆𝑥.𝑥 ̸=𝜏 ∅ =𝜏 (𝜆𝑥 .𝑥𝑥) (𝜆𝑥 .𝑥𝑥) =: Ω.
In 𝜆-calculus, =𝜏 is the 𝜆-theory equating Böhm trees. In

particular, it is sensible (i.e. it equates all unsolvables). We
will see (Corollary 3.15) that in our case it is still sensible.

Definition 3.10. A 𝜆𝜇-term𝑀 is a head normal form (hnf
for short) iff there are no 𝜌-redexes in its head (remember
Lemma 1.4) and it has a head variable. We define the exact
same notion for 𝜆𝜇r.

Definition 3.11. The head reduction is the partial function
H : 𝜆𝜇 → 𝜆𝜇 obtained defining H(𝑀) via the following algo-
rithm:

1. 𝜌-reduce the leftmost 𝜌-redex in the head of𝑀 , if any
2. otherwise, 𝜆𝜇-reduce the head redex of𝑀 , if any
3. otherwise, H(𝑀) is not defined.

H(𝑀) is not defined iff𝑀 is a hnf. We say that head reduction
starting on𝑀 terminates iff there is a (necessarily unique) 𝑛 ≥
0 s.t.H𝑛 (𝑀) is a hnf. Here we mean as usual thatH0 (𝑀) := 𝑀 .

We extend the same definitions to resource terms, and set
H(𝑡) := ∅ whenever 𝑡 is a hnf. Moreover, we set H0 (𝑡) := 𝑡 ∈
2⟨Λr⟩ and, for 𝑛 ≥ 0:

H𝑛+1 (𝑡) :=
∑︁

𝑡1∈H(𝑡 )

∑︁
𝑡2∈H(𝑡1 )

· · ·
∑︁

𝑡𝑛+1∈H(𝑡𝑛 )
𝑡𝑛+1 ∈ 2⟨Λr⟩.

We have H1 (𝑡) = H(𝑡) and H𝑛+1 (𝑡) = ∑
𝑡 ′∈H(𝑡 )

H𝑛 (𝑡 ′).

Lemma 3.12. If 𝑠 only contains empty bags (if any) and
𝑠 ∈ nf r (𝑡), then 𝑠 ∈ 𝐻𝑛 (𝑡) for some 𝑛 ≥ 0.

Proof sketch. If 𝑡 is a hnf, 𝑠 ∈ nf r (𝑡) entails that 𝑡 already
contains only empty bags, as any eventual bag of 𝑠 is empty
and reductions cannot erase non-empty bags; but in a hnf
the reduction can only take place inside some bag, so it must
be 𝑠 = 𝑡 and we are done. If 𝑡 is not hnf, by confluence 𝑡 →r
H(𝑡) ↠r nf r (𝑡) ∋ 𝑠 . So there is a 𝑡1 ∈ H(𝑡) s.t. 𝑠 ∈ nf r (𝑡1).
Now we reason as in the beginning: if 𝑡1 is hnf we are done;
if 𝑡1 is not, we repeat the argument finding some 𝑡2. By the
well-foundedness of m̃(.), we cannot repeat the argument
forever and we must end on a hnf, so we conclude. □

Set H(T (𝑀)) := ⋃
𝑡 ∈T (𝑀 )

H(𝑡) ⊆ 𝜆𝜇r. The following lemma

is easy using Definition 3.10 and Lemma 3.3.

Lemma 3.13. If𝑀 ∈ 𝜆𝜇 with H(𝑀) defined, we have:

T (H(𝑀)) = H(T (𝑀)).

The following proposition shows that 𝜆𝜇-calculus enjoys
a notion of solvability analogue to the one of 𝜆-calculus.

Proposition 3.14. For𝑀 ∈ 𝜆𝜇, the following are equivalent:
1. 𝑀 =𝜆𝜇𝜌 𝐻 with 𝐻 hnf
2. Head reduction starting on𝑀 terminates
3. NFT (𝑀) ≠ ∅.

We call 𝑀 ∈ 𝜆𝜇 solvable iff it satisfies any of the previous
equivalent conditions. Otherwise,𝑀 is called unsolvable.

Proof. (1⇒2). By confluence𝑀 and 𝐻 have a common 𝜆𝜇𝜌-
redex 𝑀0. Since 𝐻 is a hnf, 𝑀0 is too. Let 𝑠0 be the unique
resource 𝜆𝜇-term in T (𝑀0) s.t. all its bags (if any) are empty.
This term clearly exists. Note that, by construction, 𝑠0 is
r-normal. By repeatedly applying Proposition 3.4 one can
check that we obtain an 𝑠 ∈ T (𝑀) s.t. 𝑠0 ∈ nf r (𝑠). Now, by
Lemma 3.12, 𝑠0 ∈ H𝑛 (𝑠) for some 𝑛 ≥ 0. By repeatedly apply-
ing Lemma 3.13, we find that 𝑠0 ∈ H𝑛 (T (𝑀)) = T (H𝑛 (𝑀)).
Finally, since 𝑠0 is a hnf, so it must be H𝑛 (𝑀).
(2⇒3). Easy.
(3⇒1). If NFT (𝑀) ≠ 0 there is 𝑡 ∈ T (𝑀) s.t. nf r (𝑡) ≠ 0.

By Corollary 3.8, 𝑀 ↠ 𝑁 for some 𝑁 ∈ 𝜆𝜇 s.t. nf r (𝑡) ⊆
T (𝑁 ). So T (𝑁 ) contains at least a hnf, and thus 𝑁 must be
a hnf too. □

Corollary 3.15. The 𝜆𝜇-theory =𝜏 is sensible (that is, it
equates all unsolvable terms).
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4 Applying the approximation theory
4.1 Stability
The Stability Property gives sufficient conditions for a con-
text to commute with intersections in 𝜆𝜇/=𝜏 , i.e. (the inter-
sections are defined below):

𝐶L
⋂
𝑖1

𝑁𝑖1 , . . . ,
⋂
𝑖𝑛

𝑁𝑖𝑛 M =𝜏
⋂

𝑖1 ...,𝑖𝑛

𝐶L𝑁𝑖1 , . . . , 𝑁𝑖𝑛 M.

Given a non-empty subset X ⊆ 𝜆𝜇, call its T -infimum the
set

⋂X :=
⋂

𝑀∈X
NFT (𝑀) ⊆ 𝜆𝜇r. We say that X is bounded

iff there exists an 𝐿 ∈ 𝜆𝜇 such that 𝑀 ≤ 𝐿 for all 𝑀 ∈ X.
Write 𝑀 =𝜏

⋂X instead of NFT (𝑀) = ⋂X. Observe that
(in case it exists) an𝑀 s.t.𝑀 =𝜏

⋂X need not to be unique,
so

⋂X does not identify a unique 𝜆-term.

Theorem 4.1 (Stability). Let𝐶 be an𝑛-ary 𝜆𝜇-context and fix
non empty boundedX1, . . . ,X𝑛 ⊆ 𝜆𝜇r. For all𝑀1, . . . , 𝑀𝑛 ∈ 𝜆𝜇
s.t.𝑀𝑖 =𝜏

⋂X𝑖 (𝑖 = 1, . . . , 𝑛) we have:

𝐶L𝑀1, . . . , 𝑀𝑛 M =𝜏
⋂

𝑁1∈X1
...

𝑁𝑛 ∈X𝑛

𝐶L𝑁1, . . . , 𝑁𝑛 M.

Proof. Non-trivial, but exactly as done in [1] for 𝜆-calculus
(using Theorem 3.6). □

Using the usual encoding of booleans and pairs (True :=
𝜆𝑥𝑦.𝑥 , False := 𝜆𝑥𝑦.𝑦, ⟨𝑀, 𝑁 ⟩ := 𝜆𝑧.𝑧𝑀𝑁 ) we have the non-
implementability of the following parallel-or.

Corollary 4.2. There is no Por ∈ 𝜆𝜇 s.t. for all𝑀, 𝑁 ∈ 𝜆𝜇,{
Por⟨𝑀, 𝑁 ⟩ =𝜏 True if 𝑀 ̸=𝜏 Ω or 𝑁 ̸=𝜏 Ω
Por⟨𝑀, 𝑁 ⟩ =𝜏 Ω if 𝑀 =𝜏 𝑁 =𝜏 Ω.

Proof. Otherwise, for the context 𝐶 := Por 𝜉 , by Theorem 4.1
we would have the contradiction: True =𝜏 𝐶L ⟨True,Ω⟩ M ∩
𝐶L ⟨Ω, True⟩ M =𝜏 𝐶L ⟨True,Ω⟩ ∩ ⟨Ω, True⟩ M =𝜏 𝐶L ⟨Ω,Ω⟩ M =𝜏
Ω. □

4.2 The perpendicular Lines Property
The perpendicular lines Property (PLP for short) states that,
fixed a term 𝜆𝑧1 . . . 𝑧𝑛 .𝐹 ∈ 𝜆𝜇, if the function ®𝑀 ∈ 𝜆𝜇𝑛/=𝜏→
(𝜆®𝑧.𝐹 ) ®𝑀 ∈ 𝜆𝜇/=𝜏 is constant on 𝑛 “perpendicular lines” (in
the sense of the statement, Theorem 4.4), then it is constant
everywhere. Lemma 4.3 below is the crucial ingredient for
the proof of PLP, and we use in it all the strong properties
of resource approximation (linearity, SN and confluence).

Lemma 4.3. Fix ®𝑧 := 𝑧1, . . . 𝑧𝑛 distinct variables and let 𝑡 ∈
𝜆𝜇r. Suppose that:

i. nf r (𝑡) ≠ 0
ii. there is 𝐹 ∈ 𝜆𝜇 s.t. 𝑡 ∈ T (𝐹 )
iii. there are {𝑀𝑖 𝑗 }1≤𝑖≠𝑗≤𝑛 ⊆ 𝜆𝜇 s.t. the function mapping
®𝑀 ∈ 𝜆𝜇𝑛/=𝜏 to (𝜆®𝑧.𝐹 ) ®𝑀 ∈ 𝜆𝜇/=𝜏 is constant on the

following “perpendicular lines” of 𝜆𝜇𝑛/=𝜏 :
l1 = {(𝑍, 𝑀12, . . . . . . , 𝑀1𝑛) | 𝑍 ∈ 𝜆𝜇}
l2 = {(𝑀21, 𝑍, . . . . . . , 𝑀2𝑛) | 𝑍 ∈ 𝜆𝜇}

. . .

l𝑛 = {(𝑀𝑛1, . . . , 𝑀𝑛 (𝑛−1) , 𝑍 ) | 𝑍 ∈ 𝜆𝜇}.

(1)

Then deg𝑧1 (𝑡) = · · · = deg𝑧𝑛 (𝑡) = 0.

Proof. Induction on the sizems(𝑡) of 𝑡 ∈ 𝜆𝜇r.
- Case ms(𝑡) = (1, 0, 1). Then 𝑡 is a variable (Corollary

2.16). If 𝑡 = 𝑧𝑖 for some 𝑖 then the 𝑖-th line of (1) gives the
contradiction:

𝑁𝑖 =𝜏 (𝜆®𝑧.𝑧𝑖 )𝑀𝑖1 · · ·𝑀𝑖 (𝑖−1)𝑍𝑀𝑖 (𝑖+1) · · ·𝑀𝑖𝑛 =𝜏 𝑍

for all𝑍 ∈ 𝜆𝜇. Hence, it must be deg𝑧1 (𝑡) = · · · = deg𝑧𝑛 (𝑡) = 0.
- Case ms(𝑡) > (1, 0, 1). By (𝑖) there is 𝑢 ∈ nf r (𝑡). As 𝑢 is

normal, it has shape:𝑢 = ®𝜆𝜇 |𝑦 [®𝑢 1] . . . [®𝑢𝑚] | for some𝑚 ≥ 0,
some variable 𝑦, some normal bags [®𝑢 𝑗 ], and where we have
shorten, as before, a series 𝜆®𝑥1𝜇𝛼1.𝛽1 |. . . 𝜆®𝑥𝑘𝜇𝛼𝑘 .𝛽𝑘 |. . .| | of 𝜆
and 𝜇 abstraction by just ®𝜆𝜇 |. . .|. By (𝑖𝑖) 𝑡 ∈ T (𝐹 ), so that
by Corollary 3.8 there is 𝑄 ∈ 𝜆𝜇 s.t. 𝐹 ↠ 𝑄 and 𝑢 ∈ T (𝑄).
So 𝑄 must have shape: 𝑄 = ®𝜆𝜇 |𝑦𝑄1 · · ·𝑄𝑚 | for some 𝑄 𝑗 ’s in
𝜆𝜇 s.t. [®𝑢 𝑗 ] ∈ !T (𝑄 𝑗 ) for all 𝑗 = 1, . . . ,𝑚. Now there are two
possibilities: either 𝑦 = 𝑧𝑖 for some 𝑖 = 1, . . . , 𝑛, either 𝑦 ≠ 𝑧𝑖
for all 𝑖 .
Suppose 𝑦 = 𝑧𝑖 . Then, for ®𝑞 := 𝑞1, . . . , 𝑞𝑚 fresh variables,

we can chose 𝑍 := 𝜆®𝑞.True ∈ 𝜆𝜇 (or 𝑍 := True if𝑚 = 0) in
the 𝑖-th line l𝑖 of (1), and since by (𝑖𝑖𝑖) 𝜆®𝑧.𝐹 is constant (mod
=𝜏 ) on l𝑖 , we can compute its value as:

(𝜆®𝑧.𝐹 )𝑀𝑖1 · · ·𝑀𝑖 (𝑖−1) (𝜆®𝑞.True)𝑀𝑖 (𝑖+1) · · ·𝑀𝑖𝑛

=𝜏 𝑄{𝑀𝑖1/𝑧1, . . . , (𝜆®𝑞.True)/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}
=𝜏 ®𝜆𝜇 | (𝜆®𝑞.True)𝑄𝑖1 · · ·𝑄𝑖𝑚 |
=𝜏 ®𝜆𝜇 |True|

wherewe set𝑄𝑖 𝑗 := 𝑄 𝑗 {𝑀𝑖1/𝑧1, . . . , (𝜆®𝑞.True)/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}.
The first equality holds because 𝐹 ↠ 𝑄 and =𝜏 is finer than
=𝜆𝜇𝜌 , and the second equality holds because 𝑦 = 𝑧𝑖 . In the
same way, choosing 𝑍 := 𝜆®𝑞.False ∈ 𝜆𝜇 in l𝑖 we find that
the value (mod =𝜏 ) of 𝜆®𝑧.𝐹 on l𝑖 is ®𝜆𝜇 |False|. But this is
impossible because True ̸=𝜏 False.
Therefore, it must be 𝑦 ≠ 𝑧𝑖 for all 𝑖 . Note that w.l.o.g.

𝑚 ≥ 1 (indeed if𝑚 = 0, from the fact that 𝑦 ≠ 𝑧𝑖 for all 𝑖
we already get deg𝑧𝑖 (𝑢) = 0 and, as 𝑢 ∈ nf r (𝑡) and in 𝜆𝜇r

one cannot erase non-empty bags, we are done). Now fix
𝑖 ∈ {1, . . . , 𝑛} and 𝑍 ′, 𝑍 ′′ ∈ 𝜆𝜇. Similarly as before, choos-
ing 𝑍 := 𝑍 ′ in l𝑖 and using what we found so far, putting
𝑄 ′𝑖 𝑗 := 𝑄 𝑗 {𝑀𝑖1/𝑧1, . . . , 𝑍 ′/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}, since 𝜆®𝑧.𝐹 is con-
stant (mod =𝜏 ) on l𝑖 , we can compute its value as:

(𝜆®𝑧.𝐹 )𝑀𝑖1 . . . 𝑀𝑖 (𝑖−1)𝑍
′𝑀𝑖 (𝑖+1) . . . 𝑀𝑖𝑛

=𝜏 𝑄{𝑀𝑖1/𝑧1, . . . , 𝑍 ′/𝑧𝑖 , . . . , 𝑀𝑖𝑛/𝑧𝑛}
=𝜏 ®𝜆𝜇 |𝑦𝑄 ′𝑖1 . . . 𝑄 ′𝑖𝑚 |

where the last equality holds since 𝑦 is not one of the 𝑧𝑖 ’s.
Choosing 𝑍 ′′ instead of 𝑍 ′ and putting 𝑄 ′′𝑖 𝑗 the same as 𝑄 ′𝑖 𝑗
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but with 𝑍 ′′ instead of 𝑍 ′, one has that the value (mod =𝜏 ) of
𝜆®𝑧.𝐹 on l𝑖 is ®𝜆𝜇 |𝑦𝑄 ′′𝑖1 . . . 𝑄 ′′𝑖𝑚 |. So we have ®𝜆𝜇 |𝑦𝑄 ′𝑖1 . . . 𝑄 ′𝑖𝑚 | =
®𝜆𝜇 |𝑦𝑄 ′′𝑖1 . . . 𝑄 ′′𝑖𝑚 |, which easily entails:𝑄 ′𝑖1 =𝜏 𝑄 ′′𝑖1, . . . , 𝑄 ′𝑖𝑚 =𝜏
𝑄 ′′𝑖𝑚 . But by construction we have:

𝑄 ′𝑖 𝑗 =𝜏 (𝜆®𝑧.𝑄 𝑗 )𝑀𝑖1 . . . 𝑀𝑖 (𝑖−1)𝑍
′𝑀𝑖 (𝑖+1) . . . 𝑀𝑖𝑛

𝑄 ′′𝑖 𝑗 =𝜏 (𝜆®𝑧.𝑄 𝑗 )𝑀𝑖1 . . . 𝑀𝑖 (𝑖−1)𝑍
′′𝑀𝑖 (𝑖+1) . . . 𝑀𝑖𝑛 .

So if we remember that 𝑍 ′, 𝑍 ′′ were generic in 𝜆𝜇, the previ-
ous equalities 𝑄 ′𝑖 𝑗 = 𝑄 ′′𝑖 𝑗 precisely say that 𝜆®𝑧.𝑄 𝑗 is constant
on the line l𝑖 . And since this holds for all 𝑖 = 1, . . . , 𝑛, we
have just found that 𝜆®𝑧.𝑄 𝑗 satisfies (𝑖𝑖𝑖). And since we have
equalities 𝑄 ′𝑖 𝑗 = 𝑄 ′′𝑖 𝑗 for all 𝑗 = 1, . . . ,𝑚, we have that each
𝜆®𝑧.𝑄1, . . . , 𝜆®𝑧.𝑄𝑘 satisfies (𝑖𝑖𝑖). We can now comfortably ap-
ply the induction hypothesis on any 𝑠 ∈ [®𝑢 𝑗 ]. In fact, as
[®𝑢 𝑗 ] is normal, nf r (𝑠) ≠ 0, i.e. (𝑖); as [®𝑢 𝑗 ] ∈ !T (𝑄 𝑗 ), we
have 𝑠 ∈ T (𝑄 𝑗 ), i.e. (𝑖𝑖); and we just found that 𝜆®𝑧.𝑄 𝑗 sat-
isfies (𝑖𝑖𝑖); finally, 𝑠 is a strict subterm of 𝑢 ∈ nf r (𝑡), thus
(Corollary 2.16) ms(𝑠) < ms(𝑢) ≤ ms(𝑡). Therefore, the
inductive hypothesis gives deg𝑧1 (𝑠) = · · · = deg𝑧𝑛 (𝑠) = 0.
Since this is true for all 𝑠 in all [®𝑢 𝑗 ], 𝑗 = 1, . . . ,𝑚, we get
deg𝑧1 (𝑢) = · · · = deg𝑧𝑛 (𝑢) = 0. And now 𝑢 ∈ nf r (𝑡) entails
deg𝑧1 (𝑡) = · · · = deg𝑧𝑛 (𝑡) = 0. □

Theorem 4.4 (Perpendicular Lines Property). Suppose that
for some fixed {𝑀𝑖 𝑗 }1≤𝑖≠𝑗≤𝑛 , {𝑁𝑖 }1≤𝑖≤𝑛 ⊆ 𝜆𝜇, the system of
equations:

(𝜆𝑧1 . . . 𝑧𝑛 .𝐹 ) 𝑍 𝑀12 . . . . . . 𝑀1𝑛 =𝜏 𝑁1
(𝜆𝑧1 . . . 𝑧𝑛 .𝐹 ) 𝑀21 𝑍 . . . . . . 𝑀2𝑛 =𝜏 𝑁2

. . .
...

(𝜆𝑧1 . . . 𝑧𝑛 .𝐹 ) 𝑀𝑛1 . . . 𝑀𝑛 (𝑛−1) 𝑍 =𝜏 𝑁𝑛

holds for all 𝑍 ∈ 𝜆𝜇. Then:
(𝜆𝑧1 . . . 𝑧𝑛 .𝐹 )𝑍1 . . . 𝑍𝑛 =𝜏 𝑁1

for all 𝑍1, . . . , 𝑍𝑛 ∈ 𝜆𝜇.

Proof. It follows from Lemma 4.3 as done in [1]. □

Corollary 4.5. There is no Por′ ∈ 𝜆𝜇 s.t. for all 𝑍 ∈ 𝜆𝜇 one
has at the same time Por′ True𝑍 =𝜏 True, Por′ 𝑍 True =𝜏 True,
Por′ False False =𝜏 False.

The non existence of parallelism in 𝜆𝜇-calculus is known
as folklore via arguments involving stable models: here we
proved it solely via Taylor expansion.

5 Conclusions and Future Works
In [23] Laurent studies the mathematics of (untyped) 𝜆𝜇-
calculus via its denotational semantics; this paper does it
by developing a theory of program approximation based
on Linear Logic resources. In particular, we proved that the
approximation theory satisfies strong normalisation and con-
fluence (non-trivial results in this setting), the Monotonicity
Property, the Non-Interference Property, that it induces a
sensible 𝜆𝜇-theory, and that it can be used as a tool in order

to obtain the Stability Property and the Perpendicular Lines
Property, and thus the impossibility of parallel computations
in the language. A first natural question immediately arises:

1- Does Taylor expansion allow to find interesting proper-
ties not satisfied by 𝜆-calculus, but that are enjoyed by the
𝜆𝜇-calculus due to the presence of callcc?
For future investigations, we believe that it would be in-

teresting to integrate this approach with the differential ex-
tension of 𝜆𝜇-calculus defined in [30], via the mentioned
translation (·)𝜕 , in order to explore quantitative properties.
The following two questions are maybe the most signifi-

cant ones:
2- Does it makes sense to introduce Böhm trees for the 𝜆𝜇-

calculus? For instance, for the call-by-value 𝜆-calculus, the
Taylor expansion has provided in [17] invaluable guidance
for finding a meaningful notion of trees satisfying Ehrhard
and Regnier’s commutation formula; the same methodology
could maybe be applied here. However, in [7] it is shown
that 𝜆𝜇-calculus does not enjoy Böhm’s separation property.
David and Py’s counterexample could hence be an indication
that, instead, Böhm trees are not a “good” notion for 𝜆𝜇-
calculus. The best way of proceeding would be, in that case,
to consider the natural extension of 𝜆𝜇-calculus given by
Saurin’s Λ𝜇-calculus [28]. It was introduced precisely to
satisfy Böhm’s property and, as amatter of fact, in [28] Saurin
proposes a definition of Böhm trees for his Λ𝜇-calculus.
3- Does Λ𝜇-calculus enjoys the same approximation the-

ory developed in this paper? On one hand, many construc-
tions we did in this chapter seem possible also in Saurin’s
calculus, on the other hand we used the fact that the number
of 𝜇’s in a term is the same as the named subterms, e.g. in Re-
mark 2.7. In general, one could wonder which one, between
𝜆𝜇 and Λ𝜇, should be the “canonical lambda-mu-calculus”:
from a proof-theoretical perspective 𝜆𝜇-calculus precisely
corresponds to Parigot’s CD-derivations, but Λ𝜇-calculus
satisfies more desirable properties (Böhm separation). More-
over, in [27], Saurin adapts usual techniques of 𝜆-calculus
to Λ𝜇-calculus: he studies the notion of solvability, proves
a standardization theorem and studies more in detail the
notion of Böhm trees. A very interesting future direction of
research would be, hence, to develop our theory of resource
approximation for Saurin’s calculus, and study its relation
with his theory of Böhm approximation. In any case, we
look at the fact that the Taylor expansion works so nicely in
𝜆𝜇-calculus – and this regardless of a notion of Böhm trees –
as a a posteriori confirmation of the high power of this form
of approximation.

There are at least three other interesting points in relation
with strictly related areas:

3- The 𝜆𝜇-calculus can be translated in the 𝜆-calculus via
the CPS-translations (see e.g. de Groote’s one in [8]). What
does our theory of approximation correspond to under this
translation?
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4- In order to perform a deeper logical analysis, one should
consider translations into Linear Logic. It is known from [22]
that 𝜆𝜇-calculus translates into polarized proof nets. Taylor
expansion for proof-nets is possible, but the construction can
be complex: in fact one of the interests in directly defining
a Taylor expansion for a certain “𝜆-calculus style” program-
ming language (as we did for 𝜆𝜇-calculus, and as one does for
𝜆-calculus) is precisely to avoid that complexity. In our case
we have just shown that, at the end of the day, the theory
of resource approximation for 𝜆𝜇-calculus can be developed
with essentially the same methodology as in 𝜆-calculus. This
leads to asking what makes a Taylor expansion “easy”, and
should be considered in relation to the already mentioned
possibility of the existence of a coherence relation for which
T (𝑀) is a clique. This motivates an investigation of the
complexity of the definition of a Taylor expansion of a pro-
gramming language/proof system, which may be related
to the notion of connectedness of proof-nets, whose study
starts in [14]. Such question should be considered in relation
with the so-called problem of the “inversion of Taylor expan-
sion” [15, 16] and the problem of “injectivity” of denotational
models (in particular, the relational one) for Linear Logic.
5- The 𝜆𝜇-calculus is not the only way of extending the

Curry-Howard correspondence to classical logic. Another
notable one is the already mentioned Krivine’s classical re-
alizability, which is a “machine to extract computational
content from proofs + axioms” (for almost all mathematics,
such as the one formalizable in ZF+AC, see [20]). There are
translations between 𝜆𝜇-calculus and Krivine’s calculus, and
vice-versa. What does our work say about Krivine’s realis-
ability?
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A TECHNICAL APPENDIX
Below, the technical appendix, where we report all the proofs
not given in the main paper. The appendix is organised in
five sections (A.1 to A.6). At the beginning of each of them,
we indicate which are the results of the main paper that we
are going to prove in it. Remark that at the very end (after
the Appendix A.6) there are some figures to which we refer
during the appendices.

A.1 APPENDIX - SECTION 2.1
We give proofs of Proposition 2.10, Proposition 2.11 and
Corollary 2.13.

Proof of Proposition 2.10. If 𝑡 →𝜆r 𝑡
′+T then 𝑡 = 𝑐L (𝜆𝑥.𝑠)𝑏0 M

and 𝑡 ′ = 𝑐Lℎ M with ℎ = 𝑠{𝑢𝜎 (1)/𝑥 (1) , . . . , 𝑢𝜎 (𝑛)/𝑥 (𝑛) } ∈
𝑠 ⟨𝑏0/𝑥⟩, for 𝑐 a single-hole resource context, 𝜎 a permutation
and 𝑏0 = [𝑢1, . . . , 𝑢𝑛]. Call 𝑘 := deg𝜇 (𝑡) = deg𝜇 (𝑡 ′), and let
us use the same notation 𝐵𝑐𝑡 as in the proof of Proposition 2.9.
Then we have that m(𝑡 ′) is the bag:

𝑘 − 𝐵𝑐𝑡 ′ ∗ 𝐵𝑠𝑡 ′ ∗ [ 𝑑𝑡 ′ (𝑏) | 𝑏 in some 𝑢𝑖 in 𝑏0 ]
and m(𝑡) is the bag:
m(𝑡) = 𝑘 − 𝐵𝑐𝑡 ∗ 𝐵𝑠𝑡 ∗ [𝑑𝑡 (𝑏) | 𝑏 in some 𝑢𝑖 in 𝑏0 ] ∗ [ 𝑑𝑡 (𝑏0)] .
Now, it is easily understood that if 𝑏 occurs in 𝑐 , or 𝑏 occurs
in 𝑠 , then 𝑑𝑡 ′ (𝑏) = 𝑑𝑡 (𝑏). Furthermore, for all 𝑏 occurrence
of bag in some 𝑢𝜎 (𝑖 ) belonging to 𝑏0, one has:

𝑑𝑡 ′ (𝑏) = 𝑑𝑐 (𝜉)+𝑑𝑠 (𝑥 (𝑖 ) )+𝑑𝑢𝜎 (𝑖 ) (𝑏) ≥ 𝑑𝑐 (𝜉)+𝑑𝑢𝜎 (𝑖 ) (𝑏) = 𝑑𝑡 (𝑏).
Thus: m(𝑡) ≥ m(𝑡 ′) ∗ [ 𝑘 − 𝑑𝑡 (𝑏0) ] > m(𝑡 ′). □

Proof of Proposition 2.11. If 𝑡 →𝜌r 𝑡 ′ + T then 𝑡 = 𝑐Lℎ M and
𝑡 ′ = 𝑐Lℎ′ M, with ℎ = 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑠 | | and ℎ′ = 𝜇𝛾 .𝜂 |𝑠 |{𝛼/𝛽} and
𝑐 a single-hole resource context. Therefore:

m(𝑡 ′) = [ deg𝜇 (𝑡 ′)−𝑑𝑡 ′ (𝑏) | 𝑏 in 𝑐 ]∗[ deg𝜇 (𝑡 ′)−𝑑𝑡 ′ (𝑏) | 𝑏 in 𝑠 ] .
m(𝑡) = [ deg𝜇 (𝑡) −𝑑𝑡 (𝑏) | 𝑏 in 𝑐] ∗ [ deg𝜇 (𝑡) −𝑑𝑡 (𝑏) | 𝑏 in 𝑠] .
First, remark that deg𝜇 (𝑡 ′) = 1 + deg𝜇 (𝑐) + deg𝜇 (𝑠) and
deg𝜇 (𝑡) = 2 + deg𝜇 (𝑐) + deg𝜇 (𝑠).
Also, notice as usual that if 𝑏 occurs in 𝑐 then 𝑑𝑡 ′ (𝑏) =

𝑑𝑐 (𝑏) = 𝑑𝑡 (𝑏). Putting these things together we have that, if
𝑐 contains at least one bag:

[ deg𝜇 (𝑡 ′) − 𝑑𝑡 ′ (𝑏) | 𝑏 in 𝑐 ] = (1 + deg𝜇 (𝑠)) +m(𝑐)
< (2 + deg𝜇 (𝑠)) +m(𝑐) = [ deg𝜇 (𝑡) − 𝑑𝑡 (𝑏) | 𝑏 in 𝑐 ] .

On the other hand, if 𝑐 does not contain any bag, the previous
multisets are both empty, thus equal.
Now let’s see what happens if 𝑏 occurs in 𝑠 . We have:

𝑑𝑡 ′ (𝑏) = 1 + 𝑑𝑐 (𝜉) + 𝑑𝑠 (𝑏) and 𝑑𝑡 (𝑏) = 2 + 𝑑𝑐 (𝜉) + 𝑑𝑠 (𝑏).
Therefore:

[ deg𝜇 (𝑡 ′) − 𝑑𝑡 ′ (𝑏) | 𝑏 in 𝑠 ] = (deg𝜇 (𝑐) − 𝑑𝑐 (𝜉)) +m(𝑠)
= [ deg𝜇 (𝑡) − 𝑑𝑡 (𝑏) | 𝑏 in 𝑠 ] .

These facts immediately imply that m(𝑡) ≥ m(𝑡 ′). □

Proof of Corollary 2.13. The only case in which m(·) may re-
main constant is along a 𝜌r-reduction, but in this case deg𝜇 (𝑡)
strictly decreases, so 𝑡 →r 𝑡 ′ + T entails m̃(𝑡) > m̃(𝑡 ′).
Now one concludes as usual: if we associate the multiset
[m̃(𝑡) | 𝑡 ∈ T] with any sum T (in particular, a single ele-
ment sum), it is immediate to see that if T →r S, then the
multiset associated with T is strictly smaller, in the multiset
order, than the one associated with S (the empty multiset 1
being associated with the empty sum 0). Therefore the well-
foundeness of the multiset order (since the order on m̃(·) is
well-founded) gives the non-existence of infinite (non-trivial)
reductions. □

A.2 APPENDIX - SECTION 2.2
We give complete proofs of Lemma 2.25 and Proposition 2.26.

In order to prove Lemma 2.25, we need a number of tech-
nical lemmas handling the interaction of two successive sub-
stitutions. The proofs of these lemmas are tedious and long
inductions and we do not report them here. In the following,
we will use Notation 2.24.

Lemma A.1. Let 𝑡 ∈ 𝜆𝜇r and 𝛼, 𝛽,𝛾, 𝜂 names.
If 𝛼 ≠ 𝜂, 𝛽 ≠ 𝜂 and 𝛽 ≠ 𝛾 , then 𝑡{𝛼/𝛽}{𝛾/𝜂} = 𝑡{𝛾/𝜂}{𝛼/𝛽}.

The following lemma says how a renaming behaves with
respect to the linear substitution and the linear named appli-
cation.

Lemma A.2. Let 𝑡 ∈ 𝜆𝜇r and [®𝑢] a bag. Then:
1. 𝑡 ⟨[®𝑢]/𝑥⟩+{𝛼/𝛽} = 𝑡{𝛼/𝛽}⟨[®𝑢{𝛼/𝛽}]/𝑥⟩+ .
2. If 𝛼 ≠ 𝛾 ≠ 𝛽 then:
( ⟨𝑡⟩+𝛾 [®𝑢] ){𝛼/𝛽} = ⟨𝑡{𝛼/𝛽}⟩+𝛾 [®𝑢{𝛼/𝛽}] .

3. If 𝛼 ≠ 𝛾 ≠ 𝛽 then:
( ⟨𝜂 |𝑡 |⟩+𝛾 [®𝑢] ){𝛼/𝛽} = ⟨𝜂 |𝑡 |{𝛼/𝛽}⟩+𝛾 [®𝑢{𝛼/𝛽}] .

The next lemma says how two linear substitutions operate
when applied consecutively.

Lemma A.3. . Let 𝑡 ∈ 𝜆𝜇r, [®𝑣] =: [𝑣1, . . . , 𝑣𝑛] and [®𝑢] bags
and 𝑦 ≠ 𝑥 variables with 𝑦 not occurring in [®𝑢]. Then the sum
𝑡 ⟨[®𝑣]/𝑦⟩⟨[®𝑢]/𝑥⟩ is:∑︁

𝑊

𝑡 ⟨[ ®𝑤 0]/𝑥⟩⟨[𝑣1⟨[ ®𝑤 1]/𝑥⟩, . . . , 𝑣𝑛 ⟨[ ®𝑤 𝑛]/𝑥⟩]/𝑦⟩

with𝑊 : (®𝑢) −→ {0, . . . , 𝑛}.

The condition 𝑥 ≠ 𝑦 in the previous lemma cannot be
suppressed: for instance for 𝑥 = 𝑦, 𝑡 = 𝑥 , [®𝑣] = 1 and
[®𝑢] = [𝑧], with 𝑧 ≠ 𝑦, the left hand-side of the equality
becomes 𝑥 ⟨1/𝑥⟩+⟨[𝑧]/𝑥⟩+ = 0 while the right hand-side
becomes 𝑥 ⟨[𝑧]/𝑥⟩+⟨1/𝑥⟩+ = 𝑧.
The next lemma says how a linear substitution operates

on linear named application.

Lemma A.4. . Let 𝑡 ∈ 𝜆𝜇r, [®𝑣] =: [𝑣1, . . . , 𝑣𝑛] and [®𝑢]
bags and 𝛼 a name with6 deg𝛼 ( [®𝑢]) = 0. Then the sum
6By “deg𝛽 ( [ ®𝑢 ] ) = 0” we mean that deg𝛽 (𝑢 ) = 0 for all 𝑢 ∈ [ ®𝑢 ].
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( ⟨𝑡⟩+𝛼 [®𝑣] ) ⟨[®𝑢]/𝑥⟩ is:∑︁
𝑊

⟨𝑡 ⟨[ ®𝑤 0]/𝑥⟩⟩+𝛼 [𝑣1⟨[ ®𝑤 1]/𝑥⟩, . . . , 𝑣𝑛 ⟨[ ®𝑤 𝑛]/𝑥⟩]

with𝑊 : (®𝑢) −→ {0, . . . , 𝑛}.

The following two remarks are easy:

Remark A.5. Let 𝛼 be a name, 𝑡 ∈ 𝜆𝜇r and [®𝑢], [®𝑣] bags. If
deg𝛼 ( [®𝑣]) = 0 then one has:

⟨𝑡 [®𝑣]⟩+𝛼 [®𝑢] = (⟨𝑡⟩+𝛼 [®𝑢] ) [®𝑣] .

Remark A.6. Let 𝛼 ≠ 𝛽 be names, 𝑡 ∈ 𝜆𝜇r and [®𝑣] =:
[𝑣1, . . . , 𝑣𝑛], [®𝑢] bags. If deg𝛽 (𝑡) = 0 then one has:

⟨⟨𝑡⟩+𝛼 [®𝑣]⟩+𝛽 [®𝑢] =
∑︁
𝑊

⟨𝑡⟩+𝛼 [⟨𝑣1⟩+𝛽 [ ®𝑤
1], . . . , ⟨𝑣𝑛⟩+𝛽 [ ®𝑤

𝑛]] .

with𝑊 : (®𝑢) −→ {1, . . . , 𝑛}.

The next lemma says in which sense and when, in some
cases, one can swap the order of two linear applications.

Lemma A.7. Let 𝑡 ∈ 𝜆𝜇r, [®𝑢], [®𝑣] bags and 𝛼 ≠ 𝛽 names.
1. If deg𝛼 ( [®𝑣]) = 0 and deg𝛽 ( [®𝑢]) = 0, then:

⟨⟨𝑡⟩+𝛼 [®𝑢]⟩+𝛽 [®𝑣] = ⟨⟨𝑡⟩
+
𝛽
[®𝑣]⟩+𝛼 [®𝑢] .

2. If deg𝛼 ( [®𝑣]) = 0 then, taking 𝛿 a fresh name, one has:

⟨⟨𝑡⟩+𝛼 [®𝑢]⟩+𝛽 [®𝑣] =
∑︁
𝑊

⟨⟨⟨𝑡⟩+
𝛽
[ ®𝑤 1]⟩+𝛼 [®𝑢{𝛿/𝛽}]⟩+𝛿 [ ®𝑤

2] {𝛽/𝛿}

with𝑊 : (®𝑣) −→ {1, 2}.
3. If deg𝛽 ( [®𝑢]) = 0 then, taking 𝛿 a fresh name, one has:

⟨⟨𝑡⟩+𝛼 [®𝑢]⟩+𝛽 [®𝑣] = ⟨⟨𝑡⟩
+
𝛽
[®𝑣{𝛿/𝛼}]⟩+𝛼 [®𝑢] {𝛼/𝛿}.

The next lemma says how a linear named applications on
a name operates on a renaming involving the same name.

Lemma A.8. Let 𝑡 ∈ 𝜆𝜇r, [®𝑢] a bag and 𝛼 ≠ 𝛽 names with
deg𝛽 ( [®𝑢]) = 0. Then:

⟨𝑡{𝛼/𝛽}⟩+𝛼 [®𝑢] =
∑︁
𝑊

⟨⟨𝑡⟩+𝛼 [ ®𝑤 1]⟩+
𝛽
[ ®𝑤 2] {𝛼/𝛽}

with𝑊 : (®𝑢) −→ {1, 2}.

The condition 𝛼 ≠ 𝛽 in the previous lemma cannot be
suppressed: for instance, for 𝑡 = 𝜇𝛾 .𝛼 |𝑥 | and [®𝑢] = 1, the left
hand-side of the equality becomes 𝜇𝛾 .𝛼 |𝑥1| while the right
hand-side becomes:∑︁

𝑊 :( )−→{1,2}
𝜇𝛾 .𝛼 |𝑥 [ ®𝑤 1] [ ®𝑤 2] | = 𝜇𝛾 .𝛼 |𝑥 1 1|.

Also the condition deg𝛽 ( [®𝑢]) = 0 cannot be suppressed:
for instance, for 𝑡 = 𝜇𝛾 .𝛼 |𝑥 | and [®𝑢] = [𝜇𝛾 ′ .𝛽 |𝑦 |], the left
hand-side becomes 𝜇𝛾 .𝛼 |𝑥 [𝜇𝛾 ′ .𝛽 |𝑦 |] | while the right hand-
side becomes 𝜇𝛾 .𝛼 |𝑥 [𝜇𝛾 ′ .𝛽 |𝑦1|] |.

The following lemma says how a linear named application
operates on a linear substitution.

Lemma A.9. Let 𝑡 ∈ 𝜆𝜇r, [®𝑣] =: [𝑣1, . . . , 𝑣𝑛], [®𝑢] bags, 𝑥 a
variable and𝛼 a name s.t. deg𝑥 ( [®𝑢]) = 0. Then ⟨𝑡 ⟨[®𝑣]/𝑥⟩⟩+𝛼 [®𝑢]
is: ∑︁

𝑊

(⟨𝑡⟩+𝛼 [ ®𝑤 0])⟨[⟨𝑣1⟩+𝛼 [ ®𝑤 1], . . . , ⟨𝑣𝑛⟩+𝛼 [ ®𝑤 𝑛]]/𝑥⟩

with𝑊 : (®𝑢) −→ {0, . . . , 𝑛}.

The condition deg𝑥 ( [®𝑢]) = 0 in the previous lemma can-
not be suppressed: for instance, for 𝑡 = 𝜇𝛾 .𝛼 |𝑦 | (with 𝑦 ≠ 𝑥 ),
[®𝑣] = 1 and [®𝑢] = [𝑥], the left hand-side becomes 𝜇𝛾 .𝛼 |𝑦 [𝑥] |
while the right hand-side becomes 0.

The next lemma says how two linear named application
operate consecutively.

LemmaA.10. Let 𝑡 ∈ 𝜆𝜇r,𝛼 ≠ 𝛾 names and [®𝑣] =: [𝑣1, . . . , 𝑣𝑛],
[®𝑢] bags s.t. deg𝛾 ( [®𝑢]) = 0. Then:

⟨⟨𝑡⟩+𝛾 [®𝑣]⟩+𝛼 [®𝑢] =
∑︁
𝑊

⟨⟨𝑡⟩+𝛼 [ ®𝑤 0]⟩+𝛾 [⟨𝑣1⟩+𝛼 [ ®𝑤 1], . . . , ⟨𝑣𝑛⟩+𝛼 [ ®𝑤 𝑛]]

with𝑊 : (®𝑢) −→ {0, . . . , 𝑛}.
Furthermore, the same holds also for named terms. That is,

under the same hypothesis and for 𝜂 a name, we have7 that
the sum ⟨⟨𝜂 |𝑡 |⟩+𝛾 [®𝑣]⟩+𝛼 [®𝑢] is:∑︁

𝑊

⟨⟨𝜂 |𝑡 |⟩+𝛼 [ ®𝑤 0]⟩+𝛾 [⟨𝑣1⟩+𝛼 [ ®𝑤 1], . . . , ⟨𝑣𝑛⟩+𝛼 [ ®𝑤 𝑛]]

with𝑊 : (®𝑢) −→ {0, . . . , 𝑛}.

The condition 𝛼 ≠ 𝛾 in the previous lemma cannot be
suppressed: for instance, for 𝑡 = 𝜇𝛿.𝛼 |𝑥 |, [®𝑢] = [𝜇𝛿.𝛿 |𝑥 |] and
[®𝑣] = [𝜇𝛿.𝛿 |𝑦 |], the left hand-side becomes
𝜇𝛿.𝛼 |𝑥 [𝜇𝛿.𝛿 |𝑦 |] [𝜇𝛿.𝛿 |𝑥 |] | while the right hand-side becomes
𝜇𝛿.𝛼 |𝑥 [𝜇𝛿.𝛿 |𝑥 |] [𝜇𝛿.𝛿 |𝑦 |] |.
Also the condition deg𝛾 ( [®𝑢]) = 0 in the previous lemma

cannot be suppressed: for instance, for 𝑡 = 𝜇𝛿.𝛼 |𝑥 |, [®𝑢] =
[𝜇𝛿.𝛾 |𝑥 |] and [®𝑣] = [𝜇𝛿.𝛿 |𝑥 |], the left hand-side becomes 0
while the right hand-side becomes 𝜇𝛿.𝛼 |𝑥 [𝜇𝛿.𝛾 |𝑥 [𝜇𝛿.𝛿 |𝑥 |] |] |.

Remark A.11. Let [𝑝, ®𝑞] be a bag. Then, every function𝑊 ′ :
{𝑝,𝑢1, . . . , 𝑢𝑘 } −→ {0, . . . , 𝑛} is uniquely determined by the
choice of𝑊 ′ (𝑝) ∈ {0, . . . , 𝑛} plus the choice of a function𝑊 :
{𝑢1, . . . , 𝑢𝑘 } −→ {0, . . . , 𝑛}. This is reflected in the equality
(𝑛 + 1)𝑘+1 = (𝑛 + 1)𝑘 · (𝑛 + 1). Now, for 0 ≤ 𝑖, 𝑗 ≤ 𝑛, let
us set [𝑝] 𝑗

𝑖
the singleton multiset [𝑝] if 𝑖 = 𝑗 , and the empty

mulitset 1 if 𝑖 ≠ 𝑗 . Therefore, the w.c. of [𝑝, ®𝑞] generated by
a 𝑊 ′ : {𝑝,𝑢1, . . . , 𝑢𝑘 } −→ {0, . . . , 𝑛} is of shape ( [ ®𝑤 0] ∗
[𝑝]𝑊

′ (𝑝 )
0 , . . . , [ ®𝑤 𝑛] ∗ [𝑝]𝑊

′ (𝑝 )
𝑛 ), for ( [ ®𝑤 0], . . . , [ ®𝑤 𝑛]) a w.c.

of [®𝑞] generated by a𝑊 : {𝑢1, . . . , 𝑢𝑘 } −→ {0, . . . , 𝑛}.

In themain paper, there is a sketch of the proof of Lemma 2.25
with the most important cases. As declared at the beginning
of this Appendix section, we give below its complete proof.

7The following is just an equality between sets of words – the named terms.
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Proof of Lemma 2.25. (1). Induction on 𝑠:
Case 𝑠 variable: impossible.
Case 𝑠 = 𝜆𝑦.𝑠′: straightforward by inductive hypothesis.
Case 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ |: we have two subcases8:
Subcase 𝑠 →+r S is performed by reducing 𝑠′:

then S = 𝜇𝛾 .𝜂 |S′ | with 𝑠′ →+r S′, and so (regardless of
whether 𝜂 equals 𝛾 or not):

𝑠{𝛼/𝛽} = 𝜇𝛾 .𝛿𝛼𝜂 (𝛽 ) |𝑠′{𝛼/𝛽}| →+r 𝜇𝛾 .𝛿𝛼𝜂 (𝛽 ) |S′{𝛼/𝛽}|
= 𝜇𝛾 .𝜂 |S′ |{𝛼/𝛽} = S{𝛼/𝛽}

where we used the inductive hypothesis.
Subcase 𝑠′ = 𝜇𝛾 ′ .𝜂′ |𝑠′′ | and 𝑠 →+r S is performed by reduc-

ing its leftmost 𝜌-redex:
Then 𝑠 = 𝜇𝛾 .𝜂 |𝜇𝛾 ′ .𝜂′ |𝑠′′ | |, S = 𝜇𝛾 .𝜂′ |𝑠′′ |{𝜂/𝛾 ′} and we have
four sub-subcases:

Sub-subcase 𝜂 = 𝛽 and 𝜂′ = 𝛽 : then

S{𝛼/𝛽} = 𝜇𝛾 .𝛽 |𝑠′′ |{𝛼/𝛽, 𝛼/𝛾 ′} = 𝜇𝛾 .𝛼 |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}|
and:

𝑠{𝛼/𝛽} = 𝜇𝛾 .𝛼 |𝜇𝛾 ′ .𝛼 |𝑠′′{𝛼/𝛽}| |
→+𝜌 𝜇𝛾 .𝛼 |𝑠′′{𝛼/𝛽}|{𝛼/𝛾 ′}
= 𝜇𝛾 .𝛼 |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}| = S{𝛼/𝛽}.

Sub-subcase 𝜂 = 𝛽 and 𝜂′ ≠ 𝛽 : then

S{𝛼/𝛽} = 𝜇𝛾 .𝜂′ |𝑠′′ |{𝛼/𝛽, 𝛼/𝛾 ′} = 𝜇𝛾 .𝛿𝛼
𝜂′ (𝛾

′ ) |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}|

and:
𝑠{𝛼/𝛽} = 𝜇𝛾 .𝛼 |𝜇𝛾 ′ .𝜂′ |𝑠′′{𝛼/𝛽}| |

→+𝜌 𝜇𝛾 .𝜂′ |𝑠′′{𝛼/𝛽}|{𝛼/𝛾 ′}
= 𝜇𝛾 .𝛿𝛼

𝜂′ (𝛾
′ ) |𝑠′′{𝛼/𝛽, 𝛼/𝛾 ′}| = S{𝛼/𝛽}.

Sub-subcase 𝜂 ≠ 𝛽 and 𝜂′ = 𝛽 : then

S{𝛼/𝛽} = 𝜇𝛾 .𝛽 |𝑠′′ |{𝜂/𝛾 ′}{𝛼/𝛽} = 𝜇𝛾 .𝛼 |𝑠′′{𝜂/𝛾 ′}{𝛼/𝛽}|
and:

𝑠{𝛼/𝛽} = 𝜇𝛾 .𝜂 |𝜇𝛾 ′ .𝛼 |𝑠′′{𝛼/𝛽}| |
→+𝜌 𝜇𝛾 .𝛼 |𝑠′′{𝛼/𝛽}|{𝜂/𝛾 ′}
= 𝜇𝛾 .𝛼 |𝑠′′{𝛼/𝛽}{𝜂/𝛾 ′}|

and the result follows by Lemma A.1.
Sub-subcase 𝜂 ≠ 𝛽 and 𝜂′ ≠ 𝛽 : then S{𝛼/𝛽} is the term:

𝜇𝛾 .𝛿𝜂
𝜂′ (𝛾

′ ) |𝑠′′{𝜂/𝛾 ′}|{𝛼/𝛽} = 𝜇𝛾 .𝛿𝜂
𝜂′ (𝛾

′ ) |𝑠′′{𝜂/𝛾 ′}{𝛼/𝛽}|

and:
𝑠{𝛼/𝛽} = 𝜇𝛾 .𝜂 |𝜇𝛾 ′ .𝜂′ |𝑠′′{𝛼/𝛽}| |

→+𝜌 𝜇𝛾 .𝜂′ |𝑠′′{𝛼/𝛽}|{𝜂/𝛾 ′}
= 𝜇𝛾 .𝛿𝜂

𝜂′ (𝛾
′ ) |𝑠′′{𝛼/𝛽}{𝜂/𝛾 ′}|

and the result follows by Lemma A.1.
Case 𝑠 = 𝑠′ [®𝑣]: we have four subcases:
Subcase 𝑠 →+r S is performed by reducing the 𝑠′: straight-

forward by inductive hypothesis.
Subcase 𝑠 →+r S is performed by reducing one 𝑣𝑖 ∈ [®𝑣]:

straightforward by inductive hypothesis.
8In the following we do not explicitly say it, but of course we will take
bound names different from 𝛼 and 𝛽 , as well as from other bound names.

Subcase 𝑠′ = 𝜆𝑥.𝑠′′ and 𝑠 →+r S is performed by reducing
the 𝜆-redex 𝑠: then S = 𝑠′′⟨[®𝑣]/𝑥⟩+ and:

𝑠{𝛼/𝛽} = (𝜆𝑥.𝑠′′{𝛼/𝛽}) [®𝑣{𝛼/𝛽}]
→𝜆r 𝑠′′{𝛼/𝛽}⟨[®𝑣{𝛼/𝛽}]/𝑥⟩+
= 𝑠′′⟨[®𝑣]/𝑥⟩+{𝛼/𝛽} = S{𝛼/𝛽}

where the second-last equality holds thanks to Lemma A.2.
Subcase 𝑠′ = 𝜇𝛾 .𝜂 |𝑠′′ | and 𝑠 →+r S is performed by reduc-

ing the 𝜇-redex 𝑠: then S = 𝜇𝛾 .⟨𝜂 |𝑠′′ |⟩+𝛾 [®𝑣] and:

𝑠{𝛼/𝛽} = (𝜇𝛾 .𝛿𝛼𝜂 (𝛽 ) |𝑠′′{𝛼/𝛽}|) [®𝑣{𝛼/𝛽}]
→𝜇r 𝜇𝛾 .⟨𝛿𝛼𝜂 (𝛽 ) |𝑠′′{𝛼/𝛽}|⟩+𝛾 [®𝑣{𝛼/𝛽}]
= 𝜇𝛾 .⟨𝜂 |𝑠′′ |{𝛼/𝛽}⟩+𝛾 [®𝑣{𝛼/𝛽}]

and the equality with S{𝛼/𝛽} follows from Lemma A.2.
(2). Induction on 𝑡 . The only non-trivial case is9 𝑡 = 𝑣0 [𝑣1, . . . , 𝑣𝑛].

In this case, by RemarkA.11, we have that ( 𝑣0 [𝑣1, . . . , 𝑣𝑛] ) ⟨[𝑠, ®𝑢]/𝑥⟩+
is:∑︁

𝑊

𝑛∑︁
𝑗=0
( 𝑣0⟨[ ®𝑤 0] ∗ [𝑠] 𝑗0/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤

𝑖 ] ∗ [𝑠] 𝑗
𝑖
/𝑥⟩, . . . ] .

where 𝑊 : (®𝑢) −→ {1, . . . , 𝑛}. Fix now a 𝑊 : (®𝑢) −→
{1, . . . , 𝑛} (together with its generated w.c.) and consider
each of the 𝑛 + 1 elements of the sum on 𝑗 . We write the case
for 𝑗 = 0, but the other cases are exactly the same. Since 𝑗 = 0,
the element is ( 𝑣0⟨[ ®𝑤 0] ∗ [𝑠]/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤 𝑖 ]/𝑥⟩, . . . ] and
by inductive hypothesis we have:

( 𝑣0⟨[ ®𝑤 0] ∗ [𝑠]/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤 𝑖 ] ∗ [𝑠]/𝑥⟩, . . . ]
↠+r ( 𝑣0⟨[ ®𝑤 0] ∗ [S]/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤 𝑖 ]/𝑥⟩, . . . ] .

Now summing up all the elements for 𝑗 = 0, . . . , 𝑛 and𝑊 :
(®𝑢) −→ {1, . . . , 𝑛} we obtain the following sum:∑︁

𝑊

𝑛∑︁
𝑗=0
( 𝑣0⟨[ ®𝑤 0] ∗ [S] 𝑗0/𝑥⟩ ) [. . . , 𝑣𝑖 ⟨[ ®𝑤

𝑖 ] ∗ [S] 𝑗
𝑖
/𝑥⟩, . . . ] .

Using again Remark A.11, the above sum becomes:

( 𝑣0 [𝑣1, . . . , 𝑣𝑛] ) ⟨[S, ®𝑢]/𝑥⟩+

which is the desired result.
(3). Induction on 𝑠 .
Case 𝑠 variable: impossible.
Case 𝑠 = 𝜆-abstraction: straightforward by inductive hy-

pothesis.
Case 𝑠 = 𝜇𝛼.𝛽 |𝑠′ |: we have two subcases:
Subcase 𝑠 →+r S is performed by reducing 𝑠′: immediate.
Subcase 𝑠′ = 𝜇𝛾 .𝜂 |𝑠′′ | and 𝑠 →+r S is performed by reduc-

ing its leftmost 𝜌-redex:

9In the case 𝑡 = 𝑦 ≠ 𝑥 , and if S = 0 and ®𝑢 is empty, note that 𝑡 ⟨ [S, ®𝑢 ]/𝑥 ⟩+ =
𝑦⟨ [0]/𝑥 ⟩+ = ∑

𝑠′∈0
𝑦⟨ [𝑠′ ]/𝑥 ⟩+ = 0 (and not “𝑦⟨ [0]/𝑥 ⟩+ = 𝑦⟨1/𝑥 ⟩+ = 𝑦”),

so the result still holds in this case.
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then S = 𝜇𝛼.𝜂 |𝑠′′ |{𝛽/𝛾} and (call [®𝑢] =: [𝑢1, . . . , 𝑢𝑘 ])

𝑠 ⟨[®𝑢]/𝑥⟩+ = 𝜇𝛼.𝛽 |𝜇𝛾 .𝜂 |𝑠′′⟨[®𝑢]/𝑥⟩+ | |
→𝜌r 𝜇𝛼.𝜂 |𝑠′′⟨[®𝑢]/𝑥⟩+ |{𝛽/𝛾}
= 𝜇𝛼.𝜂 |𝑠′′ |⟨[®𝑢]/𝑥⟩+{𝛽/𝛾}
= 𝜇𝛼.𝜂 |𝑠′′ |{𝛽/𝛾}⟨[®𝑢]/𝑥⟩+
= S⟨[®𝑢]/𝑥⟩+ .

Case 𝑠 = 𝑠′ [®𝑣]: we have four subcases:
Subcase 𝑠 →+r S is performed by reducing 𝑠′: straightfor-

ward by inductive hypothesis.
Subcase 𝑠 →+r S is performed by reducing the 𝑣𝑖 in [®𝑣]:

straightforward by inductive hypothesis.
Subcase 𝑠′ = 𝜆𝑦.𝑠′′ and 𝑠 →+r S is performed by reducing

the 𝜆-redex 𝑠: follows by Lemma A.3 (where 𝑥 ≠ 𝑦 because
𝑦 is bound and 𝑥 is fixed).

Subcase 𝑠′ = 𝜇𝛼.𝛽 |𝑠′′ | and 𝑠 →+r S is performed by reduc-
ing the 𝜇-redex 𝑠 : follows by Lemma A.4 (where deg𝛼 ( [®𝑢]) =
0 because 𝛼 is bound and [®𝑢] is fixed).

(4). Induction on 𝑡 . The non-trivial cases are 𝑡 = 𝑣0 [𝑣1, . . . , 𝑣𝑛]
and 𝑡 = 𝜇𝛾 .𝜂 |𝑡 ′ |. Both are done following the same argument
as we did in point (2); apply Remark A.11, then the inductive
hypothesis and thus close the argument by applying Remark
A.11.

(5). It is immediate discriminating the cases 𝛼 = 𝛽 and
𝛼 ≠ 𝛽 , and concluding by point (4).

(6). Induction on 𝑠 ∈ 𝜆𝜇.
Case 𝑠 = variable. Impossible.
Case 𝑠 = 𝜆-abstraction. Straightforward by inductive hy-

pothesis.
Case 𝑠 = 𝜇𝛽.𝛾 |𝑠′ |: we have two subcases:
Subcase 𝑠 →+r S is performed by reducing 𝑠′: then S =

𝜇𝛽.𝛾 |S′ | with 𝑠′ →r S
′. We have ⟨𝑠⟩+𝛼 [®𝑢] = 𝜇𝛽.⟨𝛾 |𝑠′ |⟩+𝛼 [®𝑢].

Remark that we cannot immediately apply the inductive
hypothesis on 𝛾 |𝑠′ |, simply because 𝛾 |𝑠′ | ∉ 𝜆𝜇r (it is a named
term). However we can split in the two subcases whether
𝛾 = 𝛼 or 𝛾 ≠ 𝛼 and now in both subcases we can conclude
straightforwardly by inductive hypothesis.
Subcase 𝑠′ = 𝜇𝛾 ′ .𝜂 |𝑠′′ | (with 𝛾 ≠ 𝛾 ′) and 𝑠 →+r S is per-

formed by reducing its leftmost 𝜌-redex: then S = 𝜇𝛽.𝜂 |𝑠′′ |{𝛾/𝛾 ′}.
We split in two sub-subcases:

Sub-subcase 𝛼 ≠ 𝛾 :

⟨𝑠⟩+𝛼 [®𝑢] = 𝜇𝛽.𝛾 |𝜇𝛾 ′ .⟨𝜂 |𝑠′′ |⟩+𝛼 [®𝑢] |
↠+𝜌r 𝜇𝛽. ⟨𝜂 |𝑠′′ |⟩+𝛼 [®𝑢] {𝛾/𝛾 ′}
= ⟨𝜇𝛽.𝜂 |𝑠′′ |{𝛾/𝛾 ′}⟩+𝛼 [®𝑢] (by Lemma A.2

plus deg𝛾 ′ ( [®𝑢]) = 0)
= ⟨S⟩+𝛼 [®𝑢] .

Sub-subcase 𝛼 = 𝛾 . We have:

⟨𝑠⟩+𝛼 [®𝑢] =
∑
𝑊

𝜇𝛽.𝛼 | ( 𝜇𝛾 ′ .⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1] ) [ ®𝑤 2] |

where𝑊 : (®𝑢) −→ {1, 2}

↠+𝜇r
∑
𝑊

𝜇𝛽.𝛼 |𝜇𝛾 ′ .⟨⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1]⟩+
𝛾 ′ [ ®𝑤 2] |

↠+𝜌r
∑
𝑊

𝜇𝛽.⟨⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1]⟩+
𝛾 ′ [ ®𝑤 2] {𝛼/𝛾 ′}

=
∑
𝑊

⟨⟨𝜇𝛽.𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 1]⟩+
𝛾 ′ [ ®𝑤 2] {𝛼/𝛾 ′}

= ⟨𝜇𝛽.𝜂 |𝑠′′ | {𝛼/𝛾 ′}⟩+𝛼 [®𝑢] (by Lemma A.8)
= ⟨S⟩+𝛼 [®𝑢] (since 𝛼 = 𝛾 ).

Case 𝑠 = 𝑠′ [𝑣1, . . . , 𝑣𝑛]: we have four subcases:
Subcase 𝑠 →+r S is performed by reducing 𝑠′: straightfor-

ward by inductive hypothesis.
Subcase 𝑠 →+r S is performed by reducing the 𝑣𝑖 in [®𝑣]:

straightforward by inductive hypothesis.
Subcase 𝑠′ = 𝜆𝑥.𝑠′′ and 𝑠 →+r S is performed by reducing

the 𝜆-redex 𝑠 . Then S = 𝑠′′⟨[®𝑣]/𝑥⟩ and we have:
⟨𝑠⟩+𝛼 [®𝑢] =

∑
𝑊

(𝜆𝑥.⟨𝑠′′⟩+𝛼 [ ®𝑤 0]) [. . . , ⟨𝑣𝑖⟩+𝛼 [ ®𝑤 𝑖 ], . . . ]

with𝑊 : (®𝑢) −→ {0, . . . , 𝑛}

↠+
𝜆r

∑
𝑊

(⟨𝑠′′⟩+𝛼 [ ®𝑤 0])⟨[. . . , ⟨𝑣𝑖⟩+𝛼 [ ®𝑤 𝑖 ], . . . ]/𝑥⟩

= ⟨𝑠′′⟨[®𝑣]/𝑥⟩⟩+𝛼 [®𝑢] (by Lemma A.9)

= ⟨S⟩+𝛼 [®𝑢] .
Subcase 𝑠′ = 𝜇𝛾 .𝜂 |𝑠′′ | (with 𝛾 ≠ 𝛼) and 𝑠 →+r S is performed
by reducing the 𝜇-redex 𝑠 . Then S = 𝜇𝛾 .⟨𝜂 |𝑠′′ |⟩+𝛾 [®𝑣] and we
have:
⟨𝑠⟩+𝛼 [®𝑢] =

∑
𝑊

(⟨𝜇𝛾 .𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 0]) [. . . , ⟨𝑣𝑖 ⟩+𝛼 [ ®𝑤 𝑖 ], . . . ]

with𝑊 : (®𝑢) −→ {0, . . . , 𝑛}

↠+
𝜇r 𝜇𝛾 .

∑
𝑊

⟨⟨𝜂 |𝑠′′ |⟩+𝛼 [ ®𝑤 0]⟩+𝛾 [. . . , ⟨𝑣𝑖 ⟩+𝛼 [ ®𝑤 𝑖 ], . . . ]

= 𝜇𝛾 .⟨⟨𝜂 |𝑠′′ |⟩+𝛾 [®𝑣]⟩+𝛼 [®𝑢] (by Lemma A.10)

= ⟨S⟩+𝛼 [®𝑢] .
(7). It is immediate by discriminating the cases 𝛼 = 𝛽 and

𝛼 ≠ 𝛽 , and then concluding by point (6). □

In the main paper, there is a sketch of the proof of Propo-
sition 2.26 with the most important cases. As declared at
the beginning of this Appendix section, we give below its
complete proof.

Proof of Proposition 2.26. We show, by induction on a single-
hole resource context 𝑐 , that if:

𝑡 →+baser T and 𝑐L𝑡 M→
+
r T2

then there is T′ ∈ N⟨𝜆𝜇r⟩ s.t.
𝑐LTM↠+r T

′ +
r↞ T2.



Resource approximation for the 𝜆𝜇-calculus Haifa’22, 2–5 August 2022, Haifa, Israel

In all the following diagrams we write “→” but of course we
mean “→+r ”.

(1). Case 𝑐 = 𝜉 .
So 𝑐L𝑡 M = 𝑡 →+baser T and we only have the three base-

cases of Definition 2.17. In all the diagrams of this case, when
not explicitly said differently or not clear by an easy reduc-
tion, the bottom-left reduction follows from Lemma 2.25 and
the bottom-right from Remark 2.23.
Subcase 𝑡 = (𝜆𝑥 .𝑠) [®𝑢] and T = 𝑠 ⟨[®𝑢]/𝑥⟩+. Then 𝑐L𝑡 M =

𝑡 →+r T2 (on a different redex than 𝑡 ) can only be performed
either by reducing 𝑠 , or by reducing an element𝑤 of [®𝑢]. We
have thus the following two diagrams:

(𝜆𝑥 .𝑠) [®𝑢]

𝑠 ⟨[®𝑢]/𝑥⟩+ (𝜆𝑥.S) [®𝑢]

S⟨[®𝑢]/𝑥⟩+

(𝑠→S)

(𝜆𝑥.𝑠) [𝑤, ®𝑢′]

𝑠 ⟨[𝑤, ®𝑢′]/𝑥⟩+ (𝜆𝑥.𝑠) [W, ®𝑢′]

𝑠 ⟨[W, ®𝑢′]/𝑥⟩+

(𝑤→W)

Subcase 𝑡 = (𝜇𝛼.𝛽 |𝑠 |) [®𝑢] and T = 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢]. Then
𝑐L𝑡 M = 𝑡 →+r T2 (on a different redex than 𝑡 ) can only be
performed either by reducing 𝑠 , or by reducing an element𝑤
of [®𝑢], or if 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ | and we reduce the 𝜌-redex ...𝛽 |𝜇𝛾 . ...|.
In the latter case we split into the case 𝛼 ≠ 𝛽 , the case
𝛼 = 𝛽,𝛾 ≠ 𝜂, 𝜂 = 𝛼 , the case 𝛼 = 𝛽,𝛾 ≠ 𝜂, 𝜂 ≠ 𝛼 , and the case
𝛼 = 𝛽, 𝜂 = 𝛾 (with necessary 𝛾 ≠ 𝛼).
The first case is given by the diagram:

(𝜇𝛼.𝛽 |𝑠 |) [®𝑢]

𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢] (𝜇𝛼.𝛽 |S|) [®𝑢]

𝜇𝛼.⟨𝛽 |S|⟩+𝛼 [®𝑢]

(𝑠→S)

The second case is given by the diagram:

(𝜇𝛼.𝛽 |𝑠 |) [𝑤, ®𝑢′]

𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [𝑤, ®𝑢′] (𝜇𝛼.𝛽 |𝑠 |) [W, ®𝑢′]

𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [W, ®𝑢′]

(𝑤→W)

The third case is given by the diagram in Figure 3.
The fourth case is given by the diagram in Figure 4. The bot-
tom right equality holds because, by Lemma A.8, Remark A.5

and since deg𝛾 ( [®𝑢]) = 0, each addend of the bottom right
sum is:

𝜇𝛼.𝛼 | (⟨𝑠′{𝛼/𝛾}⟩+𝛼 [ ®𝑤 0]) [ ®𝑤 1] |
=

∑
𝐷 :( ®𝑤 0 )→{1,2}

𝜇𝛼.𝛼 | (⟨⟨𝑠′⟩+𝛼 [ ®𝑑 1]⟩+𝛾 [ ®𝑑 0]) [ ®𝑤 1] |{𝛼/𝛾}

=
∑
𝐷

𝜇𝛼.𝛼 |⟨(⟨𝑠′⟩+𝛼 [ ®𝑑 1]) [ ®𝑤 1]⟩+𝛾 [ ®𝑑 0] |{𝛼/𝛾}

and since we are then summing up on all possible𝑊 : (®𝑢) →
{1, 2}, the resulting sum is the same as the one at the bottom
of the above diagram.
The fifth case is given by the diagram in Figure 5. The bottom
right equality holds by Lemma A.8 and because deg𝛾 ( [®𝑢]) =
0.
The sixth case is given by the diagram in Figure 6. The bottom
right equality holds by Lemma A.8 and because deg𝛾 ( [®𝑢]) =
0.
Subcase 𝑡 = 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑠 | | and T = 𝜇𝛾 .𝜂 |𝑠 |{𝛼/𝛽}. Then

𝑐L𝑡 M = 𝑡 →+r T2 (on a different redex than 𝑡 ) can be only
performed either by reducing 𝑠 , or if 𝑠 = 𝜇𝛾 ′ .𝜂′ |𝑠′ | and we
reduce the 𝜌-redex ...𝜂 |𝜇𝛾 ′ . ...|. In the first case the diagram
is:

𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑠 | |

𝜇𝛾 .𝜂 |𝑠 |{𝛼/𝛽} 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |S| |

𝜇𝛾 .𝜂 |S|{𝛼/𝛽}

(𝑠→S)

In the second case the diagram is given in Figure 7. In order to
prove that the second diagram holds, let us prove the equality
in the last diagram: we first show that 𝑠′{𝛼/𝛽}{𝛿0/𝛾 ′} =

𝑠′{𝜂/𝛾 ′}{𝛼/𝛽} and then that 𝛿1 = 𝛿2. For the former equality,
we have:

if 𝛽 ≠ 𝜂, then𝛿0 = 𝜂 and the equality follows fromLemmaA.1;
if 𝛽 = 𝜂 then 𝛿0 = 𝛼 and the equality holds because both

renamings {𝛼/𝛽}{𝛿0/𝛾 ′} and {𝜂/𝛾 ′}{𝛼/𝛽} coincide with the
unique renaming {𝛼/(𝛽,𝛾 ′)}10.
For the latter equality, we have:
if𝛾 ′ = 𝜂′: then 𝛿 ′2 = 𝜂 and thus𝛿2 = 𝛿0. Remark that it must

be 𝛽 ≠ 𝜂′, because otherwise 𝛽 = 𝛾 ′ which is impossible.
This means that 𝛿 ′1 = 𝜂′. But then 𝛿1 = 𝛿0, so we are done.

if 𝛾 ′ ≠ 𝜂′: then 𝛿 ′2 = 𝜂′ and thus 𝛿2 = 𝛿 ′1. Now if 𝛽 ≠ 𝜂′

then 𝛿 ′1 = 𝜂′ and thus 𝛿1 = 𝜂′; if 𝛽 = 𝜂′ then 𝛿 ′1 = 𝛼 and thus
𝛿1 = 𝛿

𝛿0
𝛼 (𝛾 ′) = 𝛼 , because it cannot be 𝛾 ′ = 𝛼 . If we read

what we just found about 𝛿1, it precisely says that 𝛿1 = 𝛿 ′1 so
we are done.

(2). Case 𝑐 = 𝜇𝛼.𝛽 |𝑐′ | with either 𝑐′L𝑡 M not a 𝜇-abstraction,
or 𝑐 = 𝜆𝑥.𝑐′.

Then the reduction 𝑐L𝑡 M→ T2 can only be performed via
a reduction 𝑐′L𝑡 M→ T′2. Both the diagrams for the two cases
of 𝑐 have the exact same shape; let us only give the one for

10We mean here that both 𝛽 and 𝛾 ′ get renamed with 𝛼 .



Haifa’22, 2–5 August 2022, Haifa, Israel Davide Barbarossa

𝑐 = 𝜇𝛼.𝛽 |𝑐′ |:

𝜇𝛼.𝛽 |𝑐′L𝑡 M|

𝜇𝛼.𝛽 |𝑐′LTM| 𝜇𝛼.𝛽 |T′2 |

𝜇𝛼.𝛽 |T̃|

(𝑐′L𝑡 M→T′2 )

where a sum T̃ s.t. 𝑐′LTM ↠ T̃ ↞ T′2 is given by inductive
hypothesis on 𝑐′.
(3). Case 𝑐 = 𝜇𝛼.𝛽 |𝑐′ |, with 𝑐′L𝑡 M a 𝜇-abstraction.
Then either 𝑐′ = 𝜉 and 𝑡 = 𝜇𝛾 .𝜂 |𝑡 ′0 |, or 𝑐′ = 𝜇𝛾 .𝜂 |𝑐′′ |.
In the first case, since by hypothesis 𝑡 →+baser T, it must

be 𝑡 = 𝜇𝛾 .𝜂 |𝜇𝛾 ′ .𝜂′ |𝑡 ′ | | and T = 𝜇𝛾 .𝜂′ |𝑡 ′ |{𝜂/𝛾 ′}. Therefore, the
reduction 𝑐L𝑡 M →r T2 (on a different redex than the one
of 𝑡 →+baser T) can only be performed either by reducing
𝑡 ′, or by reducing the 𝜌-redex ...𝛽 |𝜇𝛾 . ...|, or if 𝑡 ′ = 𝜇𝛾 .𝜂 |̃𝑡 |
and we reduce the 𝜌-redex ...𝜂′ |𝜇𝛾 . ...|. The first and second
situation of the previous list have been already treated in
the case 𝑐 = 𝜉 (with the notation used there, it corresponds
to the two diagrams of the subcase 𝑡 = 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑠 | | and
T = 𝜇𝛾 .𝜂 |𝑠 |{𝛼/𝛽}.). Also the third situation corresponds to
the exact same case just mentioned, because the external
𝜇𝛼.𝛽 |...| is not modified in neither reductions.
In the second case, then the reduction 𝑐L𝑡 M →r T2 can

only be performed either by reducing 𝑐′′L𝑡 M, or by reducing
the 𝜌-redex 𝑐L𝑡 M. In the first situation the diagram follows
easily by inductive hypothesis as in the previous case, and
in the second one the diagram is the following:

𝜇𝛼.𝛽 |𝜇𝛾 .𝜂 |𝑐′′L𝑡 M | |

𝜇𝛼.𝛽 |𝜇𝛾 .𝜂 |𝑐′′LT M | | 𝜇𝛼.𝜂 |𝑐′′L𝑡 M | {𝛽/𝛾 }

𝜇𝛼.𝜂 |𝑐′′LT M | {𝛽/𝛾 }

thanks to Remark 2.23 and Lemma 2.25.
(4). Case 𝑐 = 𝑐′ [®𝑢].
Then 𝑐L𝑡 M = 𝑐′L𝑡 M[®𝑢] and the reduction 𝑐L𝑡 M→r T2 can

only be performed either by reducing 𝑐′L𝑡 M, or reducing an
element of [®𝑢], or the in case 𝑐′L𝑡 M is a 𝜆-abstraction or a
𝜇-abstraction and we reduce the 𝜆𝜇-redex 𝑐L𝑡 M.
In the first case one can easily use inductive hypothesis.
In the second case one can easily write the diagram.
In the third case 𝑐′L𝑡 M is a 𝜆-abstraction. Then either 𝑐′ = 𝜉

and 𝑡 = 𝜆𝑥.𝑡 ′, or 𝑐′ = 𝜆𝑥 .𝑐′′. But the first case is impossi-
ble, because by hypothesis 𝑡 →+baser T, so 𝑡 cannot be a
𝜆-abstraction; In the second case the diagram corresponds
to the first diagram of the case 1 (with the notations used
there, take 𝑠 := 𝑐′′L𝑡 M and S := 𝑐′′LTM).
In the fourth case 𝑐′L𝑡 ′ M is a 𝜇-abstraction. Then either

𝑐′ = 𝜉 and 𝑡 = 𝜇𝛼.𝛽 |𝑡 ′ |, or 𝑐′ = 𝜇𝛼.𝛽 |𝑐′′ |. But in the first

situation, since by hypothesis 𝑡 →+baser T, it must be 𝑡 =

𝜇𝛼.𝛽 |𝜇𝛾 .𝜂 |𝑡 ′′ | | and T = 𝜇𝛼.𝜂 |𝑡 ′′ |{𝛽/𝛾}, and this situation has
already been treated in the case 𝑐 = 𝜉 (with the notations
used there, it corresponds to the subcase 𝑡 = (𝜇𝛼.𝛽 |𝑠 |) [®𝑢]
and T = 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢], where we consider the reduction of
the 𝜌-redex11). In the second case the diagram corresponds
to the third diagram of the case 1 (with the notations used
there, take 𝑠 := 𝑐′′L𝑡 M and S := 𝑐′′LTM).

(5). Case 𝑐 = 𝑣 [𝑐′, ®𝑢].
Then 𝑐L𝑡 M = 𝑣 [𝑐′L𝑡 M, ®𝑢] and the reduction 𝑐L𝑡 M→𝑟 T2 can

only be performed either by reducing 𝑐′L𝑡 M, or reducing 𝑣 , or
reducing an element of [®𝑢], or in the case 𝑣 is a 𝜆-abstraction
or a 𝜇-abstraction and we reduce the 𝜆𝜇-redex 𝑐L𝑡 M.

In the first case one can trivially use the inductive hypoth-
esis as done in the previous case.
In the second and third case one can easily write the dia-

gram.
Let us look at the fourth case.
If 𝑣 is a 𝜆-abstraction, say 𝑣 = 𝜆𝑥.𝑣 ′, then the diagram

corresponds to the second diagram of the case 1 (with the
notations used there, take𝑤 := 𝑐′L𝑡 M andW := 𝑐′LTM).
If 𝑣 is a 𝜇-abstraction, say 𝑣 = 𝜇𝛼.𝛽 |𝑣 ′ |, then the diagram

corresponds to the fourth diagram of the case 1 (with the
notations used there, take𝑤 := 𝑐′L𝑡 M andW := 𝑐′LTM). □

A.3 APPENDIX - SECTION 3.1
We give proofs of Lemma 3.3, Proposition 3.4, Lemma 3.5,
Proposition 3.7, Corollary 3.8.

Proof of Lemma 3.3. (1). Straightforward induction on𝑀 .
(2). Induction on𝑀 . Nothing changes w.r.t. the proof one

does in 𝜆-calculus, the only new case is 𝑀 = 𝜇𝛽.𝛼 |𝑃 | but it
is done straightforwardly exactly as the case𝑀 = 𝜆𝑥.𝑃 .

(3). Induction on𝑀 .
Case𝑀 = 𝑥 :

T ((𝑀)𝛼𝑁 ) = T ((𝑥)𝛼𝑁 )
= {𝑥}
= ⟨𝑥⟩𝛼1
=

⋃
®𝑢∈ ! T(𝑁 )

⟨𝑥⟩𝛼 [®𝑢]

=
⋃

𝑡 ∈T (𝑀 ),®𝑢∈ ! T(𝑁 )
⟨𝑡⟩𝛼 [®𝑢] .

Case𝑀 = 𝜆𝑥 .𝑃 :

T ((𝑀)𝛼𝑁 ) = T (𝜆𝑥.(𝑃)𝛼𝑁 )
= {𝜆𝑥.𝑠 | 𝑠 ∈ T ((𝑃)𝛼𝑁 )}
=

⋃
𝑝∈T (𝑃 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

𝜆𝑥 .(⟨𝑝⟩𝛼 [®𝑢])

=
⋃

𝑝∈T (𝑃 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

⟨𝜆𝑥.𝑝⟩𝛼 [®𝑢]

=
⋃

𝑡 ∈T (𝑀 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

⟨𝑡⟩𝛼 [®𝑢] .

11The diagrams are the last four of that subcase.
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Case𝑀 = 𝜇𝛽.𝛾 |𝑃 | (with 𝛽,𝛾 ≠ 𝛼):

T ((𝑀)𝛼𝑁 ) = T (𝜇𝛽.𝛾 | (𝑃)𝛼𝑁 |)
= {𝜇𝛽.𝛾 |𝑠 | | 𝑠 ∈ T ((𝑃)𝛼𝑁 )}
=

⋃
𝑝∈T (𝑃 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

𝜇𝛽.𝛾 |⟨𝑝⟩𝛼 [®𝑢] |

=
⋃

𝑝∈T (𝑃 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

⟨𝜇𝛽.𝛾 |𝑝 |⟩𝛼 [®𝑢]

=
⋃

𝑡 ∈T (𝑀 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

⟨𝑡⟩𝛼 [®𝑢] .

Case𝑀 = 𝜇𝛽.𝛼 |𝑃 | (with 𝛽 ≠ 𝛼):

T ((𝑀)𝛼𝑁 ) = T (𝜇𝛽.𝛼 | ( (𝑃)𝛼𝑁 )𝑁 |)
=

{
𝜇𝛽.𝛼 |𝑣 [ ®𝑤] | | [ ®𝑤] ∈ !T (𝑁 ),

𝑣 ∈ ⋃
𝑝∈T (𝑃 ),®𝑞∈ ! T(𝑁 )

⟨𝑝⟩𝛼 [®𝑞]
}

=

{
𝜇𝛽.𝛼 |𝑣 [ ®𝑤] | | [ ®𝑤] ∈ !T (𝑁 ), 𝑣 ∈ ⟨𝑝⟩𝛼 [®𝑞],

𝑝 ∈ T (𝑃), [®𝑞] ∈ !T (𝑁 )
}

=
⋃

𝑝∈T (𝑃 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

𝜇𝛽.
∑

( [ ®𝑤 ], [ ®𝑞 ] )
w.c. of [ ®𝑢 ]

𝛼 | (⟨𝑝⟩𝛼 [®𝑞]) [ ®𝑤] |

=
⋃

𝑝∈T (𝑃 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

𝜇𝛽.⟨𝛼 |𝑝 |⟩𝛼 [®𝑢]

=
⋃

𝑝∈T (𝑃 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

⟨𝜇𝛽.𝛼 |𝑝 |⟩𝛼 [®𝑢]

=
⋃

𝑡 ∈T (𝑀 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

⟨𝑡⟩𝛼 [®𝑢] .

Case𝑀 = 𝑃𝑄 :

T ((𝑀)𝛼𝑁 ) = T (((𝑃)𝛼𝑁 ) ((𝑄)𝛼𝑁 ))

=
⋃
𝑛∈N

⋃
𝑝∈T (𝑃 )

⋃
[ ®𝑞 ]∈ ! T(𝑄 )

⋃
[®𝑠0 ],...,[®𝑠𝑛 ]∈ ! T(𝑁 ){

𝑣 [𝑤1, . . . ,𝑤𝑛] | 𝑣 ∈ ⟨𝑝⟩𝛼 [®𝑠0], 𝑤𝑖 ∈ ⟨𝑞𝑖 ⟩𝛼 [®𝑠𝑖 ]
}

=
⋃
𝑛∈N

⋃
𝑝∈T (𝑃 )

⋃
[ ®𝑞 ]∈ ! T(𝑄 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )∑

( [®𝑠0 ], . . . , [®𝑠𝑛 ] )
w.c. of [ ®𝑢 ]

(⟨𝑝⟩𝛼 [®𝑠0]) [. . . , ⟨𝑞𝑖 ⟩𝛼 [®𝑠𝑖 ], . . . ]

=
⋃

𝑝∈T (𝑃 )

⋃
[ ®𝑞 ]∈ ! T(𝑄 )

⋃
[ ®𝑢 ]∈ ! T(𝑁 )

⟨𝑝 [®𝑞]⟩𝛼 [®𝑢]

=
⋃

𝑡 ∈T (𝑀 )

⋃
®𝑢∈ ! T(𝑁 )

⟨𝑡⟩𝛼 [®𝑢] .

□

Proof of Proposition 3.4. For the first part of the proof, we
have three subcases, corresponding to the three base-cases
of the reduction.

Subcase𝑀 = (𝜇𝛼.𝛽 |𝑃 |)𝑄, 𝑁 = 𝜇𝛼.(𝛽 |𝑃 |)𝛼𝑄 .
(1). If 𝑠 ∈ T ((𝜇𝛼.𝛽 |𝑃 |)𝑄) then 𝑠 = (𝜇𝛼.𝛽 |𝑝 |) [®𝑞] for 𝑝 ∈
T (𝑃) and [®𝑞] ∈ !T (𝑄). So 𝑠 →r 𝜇𝛼.⟨𝛽 |𝑝 |⟩𝛼 [®𝑞] ⊆ T (𝜇𝛼.(𝛽 |𝑃 |)𝛼𝑄)
thanks to Lemma 3.3.

(2). If 𝑠′ ∈ T (𝜇𝛼.(𝛽 |𝑃 |)𝛼𝑄) then thanks to Lemma 3.3,
𝑠′ ∈ 𝜇𝛼.⟨𝛽 |𝑝 |⟩𝛼 [®𝑞] for 𝑝 ∈ T (𝑃) and [®𝑞] ∈ !T (𝑄). So
T ((𝜇𝛼.𝛽 |𝑃 |)𝑄) ∋ (𝜇𝛼.𝛽 |𝑝 |) [®𝑞] →r 𝜇𝛼.⟨𝛽 |𝑝 |⟩𝛼 [®𝑞] ∋ 𝑠′, and
𝜇𝛼.⟨𝛽 |𝑝 |⟩𝛼 [®𝑞] ⊆ T (𝜇𝛼.(𝛽 |𝑃 |)𝛼𝑄).

Subcase𝑀 = 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑃 | |, 𝑁 = 𝜇𝛾 .𝜂 |𝑃 |{𝛼/𝛽}. (1) and (2)
are straightforward using Lemma 3.3 as above.
Subcase 𝑀 = (𝜆𝑥 .𝑃)𝑄, 𝑁 = 𝑃{𝑄/𝑥}. (1) and (2) are

straightforward using Lemma 3.3 as above.
The “furthermore” is by induction on the single-hole con-

text 𝐶 s.t. 𝑀 = 𝐶L𝑀 ′ M, 𝑁 = 𝐶L𝑁 ′ M and 𝑀 ′ →base 𝑁
′ (such

a 𝐶 exists because → is contextual). The base case 𝐶 = 𝜉

coincides with the above case. The step cases are straight-
forwardly done as one does in 𝜆-calculus, treating the case
of 𝜇-abstraction exactly as a 𝜆-abstraction. □

Proof of Lemma 3.5. Such a statement may seem strange at
first sight, because one would expect (3) (which is the item
used in the proof of Theorem 3.6, together with (1)) to be an
indutive step of (2). However, (3) is not an inductive step of
(2), simply because 𝜂 |𝑝 | ∉ 𝜆𝜇r. This is due to the fact that we
are in 𝜆𝜇-calculus and not in Saurin’s Λ𝜇-calculus. One could
be then tempted to state it in Λ𝜇-calculus, so only with item
(2). In this case, since 𝑝 would be in Λ𝜇 and not just in 𝜆𝜇, (3)
would in fact be an inductive step of (2), but still this is not
what we need: in fact when we use (3) in the present paper,
we want 𝑝 to be in 𝜆𝜇, something which is not guaranteed
by the statement in Λ𝜇. Let us now prove the Lemma.
(1). Induction on 𝑃 , similar to as it is done in [11].
(2). Induction on 𝑃 . Let us see the case 𝑃 = 𝜇𝛼.𝛽 |𝑀 |, the

other cases being similar. Then 𝑝 = 𝜇𝛼.𝛽 |𝑠 | and 𝑝′ = 𝜇𝛼.𝛽 |𝑠′ |,
with 𝑠, 𝑠′ ∈ T (𝑀). Let ℎ ∈ ⟨𝑝⟩𝛾 [ ®𝑑] ∩ ⟨𝑝′⟩𝛾 [ ®𝑑 ′]. Choosing
𝛼 ≠ 𝛾 , we have two subcases.

Subcase 𝛽 ≠ 𝛾 : then ℎ = 𝜇𝛼.𝛽 |ℎ0 | with ℎ0 ∈ ⟨𝑠⟩𝛾 [ ®𝑑] ∩
⟨𝑠′⟩𝛾 [ ®𝑑 ′]. We can easily conclude by inductive hypothesis.
Subcase 𝛽 = 𝛾 : then ℎ = 𝜇𝛼.𝛾 |ℎ0 [®𝑣] |, with ℎ0 ∈ ⟨𝑠⟩𝛾 [ ®𝑤] ∩
⟨𝑠′⟩𝛾 [ ®𝑤 ′] and where ( [®𝑣], [ ®𝑤]) and ( [®𝑣], [ ®𝑤 ′]) are w.c. re-
spectively of [ ®𝑑] and of [ ®𝑑 ′]. Thus by inductive hypothes
we have 𝑠 = 𝑠′, i.e. 𝑝 = 𝑝′, and also [ ®𝑤] = [ ®𝑤 ′]. Finally,
[ ®𝑑] = [ ®𝑤] ∗ [®𝑣] = [ ®𝑤 ′] ∗ [®𝑣] = [ ®𝑑 ′].
(3). Let 𝛼 ≠ 𝛾 and fresh. Then ⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑]∩⟨𝜂 |𝑝′ |⟩𝛾 [ ®𝑑 ′] ≠ ∅

iff 𝜇𝛼.⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑] ∩ 𝜇𝛼.⟨𝜂 |𝑝′ |⟩𝛾 [ ®𝑑 ′] ≠ ∅. The latter condition
is ⟨𝜇𝛼.𝜂 |𝑝 |⟩𝛾 [ ®𝑑] ∩ ⟨𝜇𝛼.𝜂 |𝑝′ |⟩𝛾 [ ®𝑑 ′], so it is of the shape con-
sidered by (2), and 𝜇𝛼.𝜂 |𝑝 |, 𝜇𝛼 .𝜂 |𝑝′ | ∈ 𝜆𝜇. Therefore (2) gives
𝜇𝛼.𝜂 |𝑝 | = 𝜇𝛼.𝜂 |𝑝′ |, i.e. 𝑝 = 𝑝′, as well as [ ®𝑑] = [ ®𝑑 ′]. □

Proof of Proposition 3.7. We have the three base-case reduc-
tions:
Case 𝑡 = (𝜇𝛼.𝛽 |𝑝 |) [®𝑞] and T′ = 𝜇𝛼.⟨𝛽 |𝑝 |⟩𝛼 [®𝑞]. So it must

be 𝑀 = (𝜇𝛼.𝛽 |𝑃 |)𝑄 with 𝑝 ∈ T (𝑃) and [®𝑞] ∈ !T (𝑄). Now
thanks to Lemma 3.3 we can take 𝑁 := 𝜇𝛼.(𝛽 |𝑃 |)𝛼𝑄 .
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Case 𝑡 = (𝜆𝑥.𝑝) [®𝑞] andT′ = 𝑝 ⟨[®𝑞]/𝑥⟩, or case 𝑡 = 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑝 | |
and T′ = 𝜇𝛾 .𝜂 |𝑝 |{𝛼/𝛽}. Exactly as above, thanks to Lemma
3.3. □

We now turn to Corollary 3.8. It relies on a result that we
did not report in the main paper: Proposition A.18, which
appears in the Appendix A.5. It is the generalisation of Propo-
sition 3.7 mentioned in the proof of Corollary 3.8 in the
main paper. This result requires some discussion, so we post-
pone its proof and dedicate the whole Appendix A.5. to it. In
the meantime, below, we prove Corollary 3.8 using Proposi-
tion A.18.

Proof of Corollary 3.8. We prove, by induction on ℓ ∈ N, that
if ℓ is the length of a maximal reduction (let’s call it 𝜙) from
a sum T to its normal form nf r (T), then the statement of
Corollary 3.8 holds. If ℓ = 0 then just take 𝑁 := 𝑀 . If ℓ ≥ 1,
then 𝜙 factorizes as T →r T

′ ↠r nf r (T) for some sum T′.
Since T ∈ T (𝑀) by hypothesis, by Proposition A.18 there
exist 𝑁 ′ ∈ 𝜆𝜇 and T′′ ⊆ T (𝑁 ′) such that 𝑀 → 𝑁 ′ and
T′ ↠r T

′′. Let 𝑘 ≥ 0 be the length of this last reduction.
By confluence, we have also T′′ ↠r nf r (T). Now take the
maximal reduction from T′′ to nf r (T′′) = nf r (T) and let ℓ ′ be
its length. Due to the maximality of𝜙 , it must be ℓ ′+𝑘+1 ≤ ℓ ,
so ℓ ′ < ℓ , and now we can apply the inductive hypothesis to
ℓ ′ (because it is the maximal length of a reduction between
a sum T′′ and its normal form). Since we already found that
T′′ ⊆ T (𝑁 ′), we get an 𝑁 ∈ 𝜆𝜇 such that 𝑀 → 𝑁 ′ ↠ 𝑁

and nf r (T) = nf r (T′′) ⊆ T (𝑁 ). □

A.4 APPENDIX - SECTION 3.2
We give proofs of Lemma 3.12 and of Lemma 3.13.

Proof of Lemma 3.12. If 𝑡 is a hnf, we can easily conclude:
since any eventual bag of 𝑠 is empty, and since reductions
cannot erase non-empty bags (because linear), the fact that
𝑠 ∈ nf r (𝑡) entails that already 𝑡 contains only empty bags.
But in a hnf the reduction can only take place inside some
bag, so it actually must be 𝑠 = 𝑡 . Therefore, 𝑠 ∈ 𝑠 = 𝑡 = H0 (𝑡)
and we are done taking 𝑛 := 0.
So we are left with the case in which 𝑡 is not hnf. In this

casewe know that 𝑡 →r H(𝑡). By confluence, H(𝑡) ↠r nf r (𝑡).
But since 𝑠 ∈ nf r (𝑡), there is some 𝑡1 ∈ H(𝑡) s.t. 𝑠 ∈ nf r (𝑡1).
Nowwe can reason as in the beginning, splitting in two cases:
either 𝑡1 is a hnf, in which case we reason exactly as in the
first four lines of the proof: by linearity we get 𝑠 = 𝑡1 ∈ H(𝑡),
and we are done taking 𝑛 := 1. Or 𝑡1 is not a hnf. In this
case we can reason again as before, obtaining a 𝑡1 →r H(𝑡1),
H(𝑡1) ↠r nf r (𝑡1) and a 𝑡2 ∈ H(𝑡1) s.t. 𝑠 ∈ nf r (𝑡2). We can
keep going with the same splits: if 𝑡2 is hnf, we are done
taking 𝑛 := 2; if 𝑡2 is not hnf, we obtain a new 𝑡3 as before.
Now, the generation of such a new 𝑡𝑖+1 from the previously
generated 𝑡𝑖 cannot continue forever: we claim that there
must be some 𝑚 ∈ N for which 𝑡𝑚 is hnf. If this is the

case, the proof is concluded because we can take 𝑛 :=𝑚 as
already mentioned. To see that such an 𝑚 does exist, one
simply remarks that at each time we have 𝑡𝑖 →r H(𝑡𝑖 ) and
𝑡𝑖+1 ∈ H(𝑡𝑖 ). But the well-founded measure m(·) is strictly
decreasing along reductions, which precisely means that we
obtain the strictly decreasing sequence:

m(𝑡) > m(𝑡1) > m(𝑡2) > · · ·
Therefore, it must terminate (because the order is well-founded)
on some m(𝑡𝑚), for some𝑚 ∈ N, and we are done as already
explained. □

The previous proof could clearly be given in an inductive
way, but we chose to give it in this way to (maybe) let the
reader better see the reasoning.

Proof of Lemma 3.13. Wehave to show thatT (H(𝑀)) = ⋃
𝑡 ∈T (𝑀 )

H(𝑡).

By Lemma 1.4 we know that:

𝑀 = 𝜆 ®𝑥1 .𝜇𝛼1 .𝛽1 |. . . 𝜆 ®𝑥𝑘 .𝜇𝛼𝑘 .𝛽𝑘 |𝑅𝑄1 . . . 𝑄𝑛 | |
with the condition that either there is a 𝜌-redex in the head
of𝑀 , or there is no such 𝜌-redex and 𝑅 is not a variable (thus
𝑅 is either a 𝜆-redex or a 𝜇-redex). We have just said in a
different fashion that 𝑀 is not a hnf. Now let us show the
two inclusions.

(⊆). Take 𝑠 ∈ T (H(𝑀)). We have three cases:
Case in which there is a 𝜌-redex in the head of𝑀 . There-

fore there is also a leftmost 𝜌-redex . . . 𝛽𝑖 |𝜇𝛼𝑖+1 . . . .| in the
head of𝑀 . Then H(𝑀) is the term:

𝜆 ®𝑥1.𝜇𝛼1.𝛽1 |. . . 𝜆 ®𝑥𝑖 .𝜇𝛼𝑖 .𝛽𝑖+1 |. . . 𝜆®𝑥𝑘𝜇𝛼𝑘 .𝛽𝑘 |𝑅 ®𝑄 | |{𝛽𝑖/𝛼𝑖+1}|.
So 𝑠 is the term:

𝜆 ®𝑥1.𝜇𝛼1 .𝛽1 |. . . 𝜆 ®𝑥𝑖 .𝜇𝛼𝑖 .𝛽𝑖+1 |. . . 𝜆®𝑥𝑘𝜇𝛼𝑘 .𝛽𝑘 |𝑟 [®𝑞1] . . . [®𝑞𝑛] | |{𝛽𝑖/𝛼𝑖+1}|
for 𝑟 ∈ T (𝑅) and [®𝑞 𝑖 ] ∈ !T (𝑄𝑖 ). But T (𝑀) contains the
element:

𝜆 ®𝑥1.𝜇𝛼1.𝛽1 |. . . 𝜆 ®𝑥𝑘 .𝜇𝛼𝑘 .𝛽𝑘 |𝑟 [®𝑞1] . . . [®𝑞𝑛] | | =: 𝑡
and thus 𝑠 = H(𝑡), i.e. 𝑠 ∈ ⋃

𝑡 ∈T (𝑀 )
H(𝑡).

Case there are no 𝜌-redexes and 𝑅 = (𝜇𝛾 .𝜂 |𝑃 |)𝐷 . Then
H(𝑀) = ®𝜆𝜇. | (𝜇𝛾 .(𝜂 |𝑃 |)𝛾𝐷) ®𝑄 |. So by Lemma 3.3 𝑠 ∈ ®𝜆𝜇. |
(𝜇𝛾 .⟨𝜂 |𝑝 |⟩𝛾 [ ®𝑑]) [®𝑞1] . . . [®𝑞𝑛] | for a 𝑝 ∈ T (𝑃), [ ®𝑑] ∈ !T (𝐷)
and [®𝑞 𝑖 ] ∈ !T (𝑄𝑖 ). So 𝑠 ∈ H(𝑡), with 𝑡 begin the term:

𝜆 ®𝑥1.𝜇𝛼1 .𝛽1 |. . . 𝜆 ®𝑥𝑘 .𝜇𝛼𝑘 .𝛽𝑘 | (𝜇𝛾 .𝜂 |𝑝 |) [ ®𝑑] [®𝑞1] . . . [®𝑞𝑛] | |
which belongs to T (𝑀), i.e. 𝑠 ∈ ⋃

𝑡 ∈T (𝑀 )
H(𝑡).

Case there are no 𝜌-redexes and 𝑅 = (𝜆𝑥 .𝑃)𝐷 . Exactly as
above using Lemma 3.3.
(⊇). One can follow the exact same kind of argument as

before: the fact that Taylor expansion preserves the structure
of the term, plus Lemma 3.3, is what makes us able to trans-
port one step of the head reduction from terms to resource
terms. □
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A.5 APPENDIX - Rigids associated with a resource
term

This appendix section does not correspond to a section in
the main paper. Its aim is to prove Proposition A.18, a result
that is needed in the proof of Corollary 3.8, as previously
explained in Appendix A.3.

We report here a proof involving the “rigid resource terms”:
words built in the same way as resource terms but taking
lists instead of bags (multiset of terms).

We present these constructions in detail also because they
are needed in the proof of Stability (Theorem 4.1), which is
done exactly as in [1, Theorem 5.11], and whose detailed
proof is given in the next Appendix A.6 for the seek of
completeness; in particular, the following Lemma A.16 and
Lemma A.17, involving these constructions, are used in the
proof of Theorem 4.1.

Definition A.12. The set of rigid terms is defined by:
𝑡 ::= 𝑥 | 𝜆𝑥.𝑡 | 𝜇𝛼.𝛽 |𝑡 | | 𝑡 ⟨𝑡 . . . , 𝑡⟩ (here ⟨. . . ⟩ means a list).

The set of rigid 𝑘-context is defined as expected adding the
clause “𝜉1 | · · · | 𝜉𝑘” for the holes.

Definition A.13. Let 𝑐 be a resource-𝑘-context. We define a
set Rigid(𝑐) of rigid 𝑘-contexts, whose elements are called the
rigids of 𝑐 , by induction on 𝑐 as follows:

1. Rigid(𝜉𝑖 ) = {𝜉𝑖 }
2. Rigid(𝑥) = {𝑥}
3. Rigid(𝜆𝑥 .𝑐0) = {𝜆𝑥.𝑐•0 | 𝑐•0 ∈ Rigid(𝑐0)}
4. Rigid(𝜇𝛼.𝛽 |𝑐0 |) = {𝜇𝛼.𝛽 |𝑐•0 | | 𝑐•0 ∈ Rigid(𝑐0)}
5. Rigid(𝑐0 [𝑐1, . . . , 𝑐𝑘 ]) = { 𝑐•0 ⟨𝑐•𝜎 (1) . . . , 𝑐

•
𝜎 (𝑘 )⟩ | 𝑐

•
𝑖 ∈ Rigid(𝑐𝑖 ) and 𝜎 permutation on 𝑘 elements }.

The rigids of a resource𝑘-context 𝑐 are the rigid𝑘-contexts
which can be “canonically associated” with 𝑐 . Rigid-resource-
calculus has been considered, e.g., in [24] and its study sheds
light on the combinatorial role of the factorial coefficients
in the full (i.e. quantitative) Taylor expansion of a term. Our
set Rigid(𝑐) is the preimage 𝐹 −1 (𝑐) of 𝑐 under the surjection
𝐹 12 from rigid contexts to resource context simply forgetting
the order of the lists. Its graph is what, in [24], is called
the “representation relation”. In the following definition we
precisely operate such a forgetful operation, but in addition
we consider terms filling the holes.

Definition A.14. Let 𝑐• be a rigid of a resource-𝑘-context 𝑐
and, for 𝑖 = 1, . . . , 𝑘 , let ®𝑣 𝑖 := ⟨𝑣𝑖1, . . . , 𝑣𝑖deg𝜉𝑖 (𝑐 )

⟩ be a list13 of

resource terms. We define, by induction on 𝑐 , a resource term
𝑐•L ®𝑣1, . . . , ®𝑣𝑘 M as follows:

1. If 𝑐 = 𝜉𝑖 then 𝑐• = 𝜉𝑖 ; we set 𝑐•L ⟨⟩, . . . , ⟨⟩, ⟨𝑣𝑖1⟩, ⟨⟩, . . . , ⟨⟩ M
to be 𝑣𝑖1.

2. If 𝑐 = 𝑥 then 𝑐• = 𝑥 ; we set 𝑐•L ⟨⟩, . . . , ⟨⟩ M := 𝑥 .
3. If 𝑐 = 𝜆𝑥 .𝑐0 then 𝑐• = 𝜆𝑥 .𝑐•0 where 𝑐

•
0 is a rigid of 𝑐0; we

set 𝑐•L ®𝑣1, . . . , ®𝑣𝑘 M = 𝜆𝑥.𝑐•0L ®𝑣1, . . . , ®𝑣𝑘 M.
12In [24] 𝐹 is called ∥ . ∥ , but here write 𝐹 , for “forgetful”.
13If deg𝜉𝑖 (𝑐 ) = 0 we mean the empty list.

4. If 𝑐 = 𝜇𝛼.𝛽 |𝑐0 | then 𝑐• = 𝜇𝛼.𝛽 |𝑐•0 | where 𝑐•0 is a rigid of
𝑐0; we set 𝑐•L ®𝑣1, . . . , ®𝑣𝑘 M = 𝜇𝛼.𝛽 |𝑐•0L ®𝑣1, . . . , ®𝑣𝑘 M|.

5. If 𝑐 = 𝑐0 [𝑐1, . . . , 𝑐𝑛], then 𝑐• = 𝑐•0 ⟨𝑐•𝜎 (1) , . . . , 𝑐
•
𝜎 (𝑛)⟩ where

𝑐•𝑖 is a rigid of 𝑐𝑖 . So each list ®𝑣 𝑖 factorizes as a con-
catenation ®𝑤 𝑖0 ®𝑤 𝑖1 · · · ®𝑤 𝑖𝑛 of lists where ®𝑤 𝑖 𝑗 has ex-
actly deg𝜉𝑖 (𝑐 𝑗 ) elements14; we set 𝑐•L ®𝑣1, . . . , ®𝑣𝑘 M to be
the term:

𝑐•0L ®𝑤10, . . . , ®𝑤𝑘0 M[𝑐•
𝜎 (1)L ®𝑤

11, . . . , ®𝑤 𝑘1 M,
. . . , 𝑐•

𝜎 (𝑛)L ®𝑤
1𝑛, . . . , ®𝑤 𝑘𝑛 M] .

Remark A.15. One clearly has that if 𝑣 ↠𝑟 V then:

𝑐•L . . . , ⟨. . . , 𝑣, . . . ⟩, . . . M

↠𝑟 -reduces to:∑︁
𝑤∈V

𝑐•L . . . , ⟨. . . ,𝑤, . . . ⟩, . . . M =: 𝑐•L . . . , ⟨. . . ,V, . . . ⟩, . . . M.

Let us extend the definition of Taylor expansion to re-
source 𝑘-contexts by adding, in its definition, the clause:

T (𝜉𝑖 ) := {𝜉𝑖 }.

It is clear that is 𝐶 is a 𝑘-context then all elements of T (𝐶)
are resource 𝑘-contexts.

In the following, if ®𝑣 is a list, we denote with [®𝑣] the mul-
tiset associated with ®𝑣 (same elements but disordered).

Lemma A.16. Let 𝐶 be a 𝑘-context and 𝑐1, 𝑐2 ∈ T (𝐶). Let
𝑐•1 and 𝑐

•
2 rigids respectivly of 𝑐1 and 𝑐2. For 𝑖 = 1 . . . , 𝑘 , let

®𝑣𝑖 = ⟨𝑣𝑖1, . . . , 𝑣𝑖deg𝜉𝑖 (𝑐1 )
⟩ and ®𝑢𝑖 = ⟨𝑣𝑖1, . . . , 𝑣𝑖deg𝜉𝑖 (𝑐2 )

⟩ be lists of
resource terms. If 𝑐•1L ®𝑣1, . . . , ®𝑣𝑘 M = 𝑐•2L ®𝑢1, . . . , ®𝑢𝑘 M then 𝑐1 = 𝑐2
and [®𝑣 𝑖 ] = [®𝑢 𝑖 ] for all 𝑖 .

Proof. Induction on 𝐶 .
Case 𝐶 = 𝜉𝑖 . Then 𝑐1 = 𝜉𝑖 = 𝑐2, and ®𝑣 𝑖 = ⟨𝑣𝑖1⟩, ®𝑢 𝑖 =

⟨𝑢𝑖1⟩ and ®𝑣 𝑗 = ⟨⟩ = ®𝑢 𝑗 for 𝑗 ≠ 𝑖 . So 𝑣𝑖1 = 𝑐•1L ®𝑣1, . . . , ®𝑣𝑘 M =

𝑐•2L ®𝑢1, . . . , ®𝑢𝑘 M = 𝑢𝑖1.
Case 𝐶 = 𝑥 . Trivial.
Case𝐶 = 𝜆𝑥 .𝐶0 and case𝐶 = 𝜇𝛼.𝛽 |𝐶0 |. Trivial by inductive

hypothesis.
Case𝐶 = 𝐶′𝐶′′. Then, for 𝑖 = 1, 2, one has 𝑐𝑖 = 𝑐𝑖0 [𝑐𝑖1, . . . , 𝑐𝑖𝑛𝑖 ]

with 𝑐𝑖0 ∈ T (𝐶′) and 𝑐𝑖 𝑗 ∈ T (𝐶′′) for 𝑗 ≥ 1. So 𝑐•𝑖 =

𝑐•𝑖0⟨𝑐•𝑖𝜎𝑖 (1) , . . . , 𝜆𝑥 .𝑐
•
𝑖𝜎𝑖 (𝑛𝑖 )⟩ where 𝜎𝑖 is a permutation on 𝑛𝑖

elements. So 𝑐•1L ®𝑣1, . . . , ®𝑣𝑘 M is the term:

𝑐•10L ®𝑤110, . . . , ®𝑤1𝑘0 M[ 𝑐•1𝜎1 (1)L ®𝑤
111, . . . , ®𝑤1𝑘1 M,

. . . , 𝑐•1𝜎1 (𝑛1 )L ®𝑤
11𝑛1 , . . . , ®𝑤1𝑘𝑛1 M]

and 𝑐•2L ®𝑣1, . . . , ®𝑣𝑘 M is the term:

𝑐•20L ®𝑤210, . . . , ®𝑤2𝑘0 M[ 𝑐•2𝜎2 (1)L ®𝑤
211, . . . , ®𝑤2𝑘1 M,

. . . , 𝑐•2𝜎2 (𝑛2 )L ®𝑤
21𝑛2 , . . . , ®𝑤2𝑘𝑛2 M]

14This is a concise way of saying that we take ®𝑤 𝑖1 := ⟨𝑣𝑖1, . . . , 𝑣𝑖deg𝜉𝑖 (𝑐1 )
⟩,

®𝑤 𝑖2 := ⟨𝑣𝑖1+deg𝜉𝑖 (𝑐1 )
, . . . , 𝑣𝑖deg𝜉𝑖 (𝑐2 )+deg𝜉𝑖 (𝑐1 )

⟩ etc.
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where the concatenation ®𝑤1𝑗1 · · · ®𝑤1𝑗𝑛1 gives ®𝑣 𝑗 and the con-
catenation ®𝑤2𝑗1 · · · ®𝑤2𝑗𝑛2 gives ®𝑢 𝑗 . From 𝑐•1L ®𝑣1, . . . , ®𝑣𝑘 M =

𝑐•2L ®𝑢1, . . . , ®𝑢𝑘 M we get that: 𝑛1 = 𝑛2 =: 𝑛, that:

𝑐•10L ®𝑤110, . . . , ®𝑤1𝑘0 M = 𝑐•20L ®𝑤210, . . . , ®𝑤2𝑘0 M (2)
and that there exist a permutation 𝜌 on 𝑛 elements which
identifies each term of the writte bag of 𝑐•1L ®𝑣1, . . . , ®𝑣𝑘 M with
the respective one of the writtten bag of 𝑐•2L ®𝑢1, . . . , ®𝑢𝑘 M. That
is, for all ℎ = 1, . . . , 𝑛, one has:
𝑐•1𝜎1 (ℎ)L ®𝑤

1 1ℎ, . . . , ®𝑤 1𝑘 ℎ M = 𝑐•2𝜎2 (𝜌 (ℎ) )L ®𝑤
2 1 𝜌 (ℎ) , . . . , ®𝑤 2𝑘 𝜌 (ℎ) M.

(3)
Now the inductive hypothesis on (2) gives 𝑐•10 = 𝑐•20 as well
as ®𝑤 1 𝑖 0 = ®𝑤 2 𝑖 0, and the inductive hypothesis on (3) gives,
at the end of the day, [𝑐•11, . . . , 𝑐•1𝑛] = [𝑐•21, . . . , 𝑐•2𝑛] as well
as [ ®𝑤1𝑗1 · · · ®𝑤1𝑗𝑛] = [ ®𝑤2𝑗1 · · · ®𝑤2𝑗𝑛] for 𝑗 ≥ 1. Putting these
things together, we have the desired result. □

Lemma A.17. 1. Let 𝐶 be a 𝑘-context.
Then T (𝐶L𝑀1, . . . , 𝑀𝑘 M) is the set:
{𝑐•L®𝑠 1, . . . , ®𝑠 𝑘 M | 𝑐 ∈ T (𝐶), 𝑐• rigid of 𝑐

and ®𝑠 𝑖 list of elements of T (𝑀𝑖 )}.
2. Let 𝑐 = 𝑐L𝜉 M single-hole resource context, 𝑀 ∈ 𝜆𝜇 and

𝑠0 ∈ 𝜆𝜇r. If 𝑐L𝑠0 M ∈ T (𝑀), then there is a context 𝐶 =

𝐶L𝜉 M, an 𝑁 ∈ 𝜆𝜇, a resource context 𝑐̃ ∈ T (𝐶), a rigid
𝑐̃ • of 𝑐 and 𝑠1 . . . , 𝑠deg𝜉 𝑐̃−1 ∈ T (𝑁 ) s.t.
a. 𝑀 = 𝐶L𝑁 M
b. 𝑠0 ∈ T (𝑁 )
c. 𝑐L𝑡 M = 𝑐̃ •L ⟨𝑡, 𝑠1 . . . , 𝑠deg𝜉 (𝑐̃ )−1⟩ M for all 𝑡 ∈ 𝜆𝜇

r.

Proof. (1). Straightforward induction on 𝐶 .
(2). Induction on the single-hole resource context 𝑐 .
Case 𝑐 = 𝜉 . Take𝐶 := 𝜉 , 𝑁 := 𝑀 , 𝑐̃ := 𝜉 , 𝑐̃ • := 𝜉 (there are no
𝑠𝑖 ’s because deg𝜉 (𝑐̃) − 1 = 0).
Case 𝑐 = 𝜇𝛼.𝛽 |𝑐1 |. Since 𝑐L𝑠0 M ∈ T (𝑀) then 𝑀 = 𝜇𝛼.𝛽 |𝑀1 |
with 𝑐1L𝑠0 M ∈ T (𝑀1). We can thus take 𝐶 := 𝜇𝛼.𝛽 |𝐶1 |, 𝑐̃ :=
𝜇𝛼.𝛽 |𝑐1 |, 𝑐̃ • := 𝜇𝛼.𝛽 |𝑐1• |, where𝐶1, 𝑁 , 𝑐1, 𝑐̃

•
1 and 𝑠1, . . . , 𝑠deg𝜉 (𝑐̃1 )

are given by the inductive hypothesis.
Case 𝑐 = 𝜆𝑥.𝑐1. Exactly as the case of 𝜇-abstraction.
Case 𝑐 = 𝑐′ [®𝑢]. Analogous as above.
Case 𝑐 = 𝑢 [𝑐′, 𝑢1, . . . , 𝑢𝑛]. Since𝑢 [𝑐′L𝑠0 M, ®𝑢] = 𝑐L𝑠0 M ∈ T (𝑀)
then 𝑀 must have shape 𝑀 = 𝑃𝑄 with 𝑢 ∈ T (𝑃) and
𝑐′L𝑠0 M, 𝑢𝑖 ∈ T (𝑄). By induction hypothesis, we can write
𝑄 = 𝐶0L𝑁 M for an appropriate context𝐶0 and𝑁 ∈ 𝜆𝜇 s.t. 𝑠0 ∈
T (𝑁 ), and also there is a resource context 𝑐0 ∈ T (𝐶0) and
𝑐•0 a rigid of 𝑐0, together with a list ®𝑠 0 := ⟨𝑠01, . . . , 𝑠0deg𝜉 (𝑐0 )−1⟩
of elements of T (𝑁 ), such that 𝑐′L𝑡 M = 𝑐•0L ⟨𝑡, ®𝑠 0⟩ M for all
𝑡 ∈ 𝜆𝜇r. But 𝑢𝑖 ∈ T (𝑄) = T (𝐶0L𝑁 M), so by the point
(1), each 𝑢𝑖 have shape 𝑢𝑖 = 𝑐•𝑖 L®𝑠 𝑖 M for an appropriate 𝑐•𝑖
rigid of some 𝑐𝑖 ∈ T (𝐶0) and some ®𝑠 𝑖 list of elements of
T (𝑁 ). Now remark that 𝑀 = 𝐶L𝑁 M for 𝐶 := 𝑃𝐶0. More-
over, putting 𝑐̃ := 𝑢 [𝑐0, 𝑐1, . . . , 𝑐𝑛] ∈ T (𝐶) and choosing its
rigid 𝑐̃ • := 𝑢•⟨𝑐•0, 𝑐•1, . . . , 𝑐•𝑘⟩ (which rigid 𝑢• of 𝑢 one choses
does not matter), we have: 𝑐L𝑡 M = 𝑢 [𝑐′L𝑡 M, 𝑢1 . . . , 𝑢𝑛] =

𝑢 [𝑐•0L ⟨𝑡, ®𝑠⟩ M, 𝑐•1L®𝑠 1 M, . . . , 𝑐•𝑘L®𝑠
𝑘 M] = 𝑐̃ •L ⟨𝑡, ®𝑠⟩ M for all 𝑡 ∈ 𝜆r,

where the list ®𝑠 is the concatenation ®𝑠 0®𝑠 1 · · · ®𝑠 𝑛 is a list of
deg𝜉 (𝑐̃) − 1 elements of T (𝑁 ). □

We can now finally prove the full Proposition A.18.

Proposition A.18. If T (𝑀) ⊇ T→r T
′ then there is𝑁 ∈ 𝜆𝜇

and a sum T̃ ⊆ T (𝑁 ) s.t.𝑀 → 𝑁 and T′ ↠r T̃.

Proof. Saying that T →r T
′ means that T has shape T =∑

𝑖

𝑡𝑖+𝑐Lℎ M andT′ has shapeT′ =
∑
𝑖

𝑡𝑖+𝑐LH M, for some single-

hole resource context 𝑐 , a resource term ℎ and a sumH s.t.
ℎ →base H . But since 𝑐Lℎ M ∈ T ⊆ T (𝑀), by Lemma A.17(2)
we get a context 𝐶0, a term 𝑁 ′ ∈ 𝜆𝜇, a resource context
𝑐0 ∈ T (𝐶0), a rigid 𝑐 •0 of 𝑐0 and resource terms ®𝑠 ∈ T (𝑁 ′)
s.t. 𝑀 = 𝐶0L𝑁 ′ M, ℎ ∈ T (𝑁 ′) and 𝑐0L𝑢 M = 𝑐 •0 L𝑢, ®𝑠 M for all
𝑢 ∈ 𝜆𝜇r. Now we can apply Proposition 3.7 to ℎ ∈ T (𝑁 ′)
obtaining an 𝑁 ′′ ∈ 𝜆𝜇 s.t. 𝑁 ′ → 𝑁 ′′ and H ⊆ T (𝑁 ′′).
Set 𝑁 := 𝐶0L𝑁 ′′ M, so that 𝑀 = 𝐶0L𝑁 ′ M → 𝑁 . Now: every
𝑡𝑖 ∈ T (𝑀) = T (𝐶0L𝑁 ′ M), so by Lemma A.17(1) it must have
shape 𝑡𝑖 = 𝑐 •𝑖 L ®𝑣𝑖 M for some resource terms 𝑣𝑖 𝑗 ∈ T (𝑁 ′), a
context 𝑐𝑖 ∈ T (𝐶0) and a rigid 𝑐 •𝑖 of 𝑐𝑖 . But since 𝑁 ′ → 𝑁 ′′

we can apply Proposition 3.4(1) on 𝑣𝑖 𝑗 and obtain that 𝑣𝑖 𝑗 ↠𝑟

V𝑖 𝑗 for some sum V𝑖 𝑗 ⊆ T (𝑁 ′′). So 𝑡𝑖 ↠𝑟 𝑐
•
𝑖 L ®V𝑖 M. Let’s call

T𝑖 := 𝑐 •𝑖 L ®V𝑖 M. Using again Lemma A.17(1) one has that T𝑖 ⊆
T (𝑁 ). Now, let’s use again Proposition 3.4(1), this time on
𝑠 ∈ T (𝑁 ′). Since 𝑁 ′ → 𝑁 ′′ we obtain sums S𝑖 ⊆ T (𝑁 ′′) s.t.
𝑠𝑖 ↠𝑟 S𝑖 . So we have: 𝑐LH M = 𝑐 •0 LH , ®𝑠 M↠𝑟 𝑐

•
0 LH , ®SM =: U.

But sinceH ⊆ T (𝑁 ′′) and every S𝑖 ⊆ T (𝑁 ′′), again thanks
to Lemma A.17(1) one has U ⊆ T (𝐶0L𝑁 ′′ M) = T (𝑁 ). This
ends the proof, since letting T̃ :=

∑
𝑖

T𝑖 + U ⊆ T (𝑁 ) one has

T′ ↠𝑟 T̃. □

A.6 APPENDIX - SECTION 4.1
We give the proof of Theorem 4.1. The proof is taken from [1].

Proof of Theorem 4.1. Since every X𝑖 is T -bounded, for 𝑖 =
1, . . . , 𝑛 there exists 𝐿𝑖 ∈ Λ s.t.

⋃
𝑁 ∈X𝑖 NFT (𝑁 ) ⊆ NFT (𝐿𝑖 ).

Fix now𝑀1, . . . , 𝑀𝑛 ∈ Λ s.t. NFT (𝑀𝑖 ) =
⋂

𝑁 ∈X𝑖
NFT (𝑁 ). We

have to show that:

NFT (𝐶L𝑀1, . . . , 𝑀𝑛 M) =
⋂

𝑁1∈X1
· · ·

⋂
𝑁𝑛∈X𝑛

NFT (𝐶L𝑁1, . . . , 𝑁𝑛 M).

(⊆). Clearly, for all 𝑖 = 1, . . . , 𝑛 and 𝑁𝑖 ∈ X𝑖 , we have
NFT (𝑀𝑖 ) ⊆ NFT (𝑁𝑖 ), therefore we conclude that:

NFT (𝐶L𝑀1, . . . , 𝑀𝑛 M) ⊆ NFT (𝐶L𝑁1, . . . , 𝑁𝑛 M)
by Monotonicity (Theorem 3.2).
(⊇). Let 𝑡 ∈ ⋂

®𝑁 ∈ ®X
NFT (𝐶L𝑁1, . . . , 𝑁𝑛 M) (where we put

®𝑁 := (𝑁1, . . . , 𝑁𝑛) and ®X := (X1, . . . ,X𝑛)). For every ®𝑁 ∈ ®X,
by Lemma A.17 there exist an 𝑛-resource-context 𝑐 ®𝑁 ∈ T (𝐶)
and, for every 𝑖 = 1, . . . , 𝑛, a list ®𝑣 𝑖®𝑁 = ⟨𝑣𝑖1®𝑁 , . . . , 𝑣

𝑖𝑑𝑖
®𝑁
⟩ (where

𝑑𝑖 := deg𝜉𝑖 (𝑐 ®𝑁 )) of elements of T (𝑁𝑖 ) and such that 𝑡 ∈



Resource approximation for the 𝜆𝜇-calculus Haifa’22, 2–5 August 2022, Haifa, Israel

nf r (𝑐•®𝑁 L ®𝑣 1
®𝑁
, . . . , ®𝑣 𝑛®𝑁 M), for 𝑐•®𝑁 a rigid of 𝑐 ®𝑁 . Fix any reduction

from 𝑐•®𝑁
L ®𝑣 1
®𝑁
, . . . , ®𝑣 𝑛®𝑁 M to its normal form, and confluence al-

lows to factorize it as follows:

𝑐•®𝑁
Lnf r (𝑣11®𝑁 ), . . . , nf r (𝑣

1𝑑1
®𝑁
), . . . , nf r (𝑣𝑛1®𝑁 ), . . . , nf r (𝑣

𝑛𝑑𝑛
®𝑁
) M

↠r
nf r (𝑐•®𝑁 L ®𝑣 1

®𝑁
, . . . , ®𝑣 𝑛®𝑁 M) ∋ 𝑡 .

So for all 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑑𝑖 , there exist 𝑤 𝑖 𝑗

®𝑁
∈

nf r (𝑣𝑖 𝑗®𝑁 ) such that:

nf r (𝑐•®𝑁 L ®𝑤 1
®𝑁
, . . . , ®𝑤 𝑛

®𝑁
M) ∋ 𝑡 (4)

and being 𝑁𝑖 ∈ X𝑖 which is bounded by 𝐿𝑖 , we have 𝑤 𝑖 𝑗

®𝑁
∈

nf r (𝑣 𝑖 𝑗®𝑁 ) ⊆ NFT (𝑁𝑖 ) ⊆ NFT (𝐿𝑖 ). From each inclusion𝑤 𝑖 𝑗

®𝑁
∈

NFT (𝐿𝑖 ) we obtain a resource term 𝑢
𝑖 𝑗

®𝑁
∈ T (𝐿𝑖 ) such that:

𝑤
𝑖 𝑗

®𝑁
∈ nf r (𝑢 𝑖 𝑗

®𝑁
) (5)

By composing thus a reduction from 𝑢
𝑖 𝑗

®𝑁
to 𝑤

𝑖 𝑗

®𝑁
with a re-

duction from 𝑐•®𝑁
L ®𝑤 1
®𝑁
, . . . , ®𝑤 𝑛

®𝑁
M to 𝑡 , we find that 𝑡 belongs to

nf r (𝑐•®𝑁 L ®𝑢 1
®𝑁
, . . . , ®𝑢𝑛®𝑁 M). This holds for all ®𝑁 ∈ ®X, i.e.:

𝑡 ∈
⋂
®𝑁 ∈ ®X

nf r (𝑐 ®𝑁 L ®𝑢 1
®𝑁
, . . . , ®𝑢𝑛®𝑁 M). (6)

Now, LemmaA.17 gives 𝑐•®𝑁 L ®𝑢 1
®𝑁
, . . . , ®𝑢𝑛®𝑁 M ∈ T (𝐶L𝐿1, . . . , 𝐿𝑛 M).

But since the 𝐿𝑖 ’s are independent from 𝑁1, . . . , 𝑁𝑛 , and
thanks to (6), we can apply Lemma 3.6, and obtain that the set
{𝑐•®𝑁 L ®𝑢 1

®𝑁
, . . . , ®𝑢𝑛®𝑁 M | ®𝑁 ∈ ®X} is actually a singleton. Therefore,

Lemma A.17(2) tells us that also the terms 𝑐 ®𝑁 and the bags
[®𝑢 𝑖
®𝑁
] are independent from ®𝑁 ∈ ®X. The unique element of

the previous singleton has hence shape 𝑐•L ®𝑢 𝑖 , . . . , ®𝑢𝑛 M, with
𝑐• a rigid of a 𝑐 ∈ T (𝐶), and ®𝑢 𝑖 a list of elements of T (𝐿𝑖 ).
Recalling now that

∑
𝑗

𝑢𝑖𝑗 ⊆ T (𝐿𝑖 ), we can apply Corollary 3.8

in order to obtain, for each 𝑖 = 1, . . . , 𝑛, an 𝐿′𝑖 ∈ Λ s.t. 𝐿𝑖 ↠ 𝐿′𝑖
and, using (5),

∑
𝑗

𝑤 𝑖 𝑗 ⊆ T (𝐿′𝑖 ). Thus Lemma A.17 tells us

that, for every ®𝑁 ∈ ®X, we have:

𝑐•L ®𝑤 1
®𝑁
, . . . , ®𝑤𝑛

®𝑁
M ∈ T (𝐶L𝐿′1, . . . , 𝐿

′
𝑛 M). (7)

But now thanks to (7) and (4) (which holds for all ®𝑁 ∈ ®X),
we can apply again Lemma 3.6 in order to find that the
set {𝑐•L ®𝑤 1

®𝑁
, . . . , ®𝑤𝑛

®𝑁
M | ®𝑁 ∈ ®X} is a singleton. Again by

Lemma A.17(2), we have that all the bags [ ®𝑤 1
®𝑁
], . . . , [ ®𝑤𝑛

®𝑁
] for

®𝑁 ∈ ®X, coincide respectively to some bags [ ®𝑤 1], . . . , [ ®𝑤𝑛]
which are independent from ®𝑁 ∈ ®X. So the only element
of the previous singleton has shape 𝑐•L ®𝑤 1, . . . , ®𝑤𝑛 M, and (4)
becomes:

𝑡 ∈ nf r (𝑐•L ®𝑤 1, . . . , ®𝑤𝑛 M). (8)

Now for all 𝑖 = 1, . . . , 𝑛, we already know that [ ®𝑤 𝑖 ] = [ ®𝑤 𝑖
®𝑁
]

which is a bag of elements of NFT (𝑁 ), and this holds for all
𝑁 ∈ X𝑖 . That is, we have:∑︁

𝑗

®𝑤 𝑖 𝑗 ⊆
⋂
𝑁 ∈X𝑖

NFT (𝑁 ) = NFT (𝑀𝑖 ) (9)

where we finally used the hypothesis. From (8), (9) and
LemmaA.17we finally conclude that 𝑡 ∈ nf r (𝑐•L ®𝑤1, . . . , ®𝑤𝑛 M) ⊆
NFT (𝐶L𝑀1, . . . , 𝑀𝑛 M). □
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(𝜇𝛼.𝛽 |𝜇𝛾 .𝜂 |𝑠′ | |) [®𝑢]

𝜇𝛼.𝛽 |𝜇𝛾 .⟨𝜂 |𝑠′ |⟩+𝛼 [®𝑢] | (𝜇𝛼.𝜂 |𝑠′ |) [®𝑢]{𝛽/𝛾}

𝜇𝛼.⟨𝜂 |𝑠′ |⟩+𝛼 [®𝑢]{𝛽/𝛾}

(𝛼≠𝛽 )

(
𝛼≠𝛽

deg𝛾 ( [ ®𝑢 ] )=0
)

Figure 3. Notable diagrams of Proposition 2.26, point (1), subcase 𝑡 = (𝜇𝛼.𝛽 |𝑠 |) [®𝑢], T = 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢], 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ |, 𝛼 ≠ 𝛽 .

(𝜇𝛼.𝛼 |𝜇𝛾 .𝛼 |𝑠′ | | ) [ ®𝑢 ]

𝜇𝛼.⟨𝛼 |𝜇𝛾 .𝛼 |𝑠′ | | ⟩+𝛼 [ ®𝑢 ] (𝜇𝛼.𝛼 |𝑠′ {𝛼/𝛾 } | ) [ ®𝑢 ]

∑
𝑊

∑
𝐷

𝜇𝛼.𝛼 | (𝜇𝛾 .𝛼 | ( ⟨𝑠′ ⟩+𝛼 [ ®𝑑 0 ] ) [ ®𝑑 1 ] | ) [ ®𝑤 1 ] | 𝜇𝛼.⟨𝛼 |𝑠′ {𝛼/𝛾 } | ⟩+𝛼 [ ®𝑢 ]

∑
𝑊

∑
𝐷

𝜇𝛼.𝛼 |𝜇𝛾 .𝛼 | ⟨ (⟨𝑠′ ⟩+𝛼 [ ®𝑑 0 ] ) [ ®𝑑 1 ] ⟩+𝛾 [ ®𝑤 1 ] | | ∑
𝑊

𝜇𝛼.𝛼 | ( ⟨𝑠′ {𝛼/𝛾 }⟩+𝛼 [ ®𝑤 0 ] ) [ ®𝑤 1 ] |

∑
𝑊

∑
𝐷

𝜇𝛼.𝛼 | ⟨ (⟨𝑠′ ⟩+𝛼 [ ®𝑑 0 ] ) [ ®𝑑 1 ] ⟩+𝛾 [ ®𝑤 1 ] | {𝛼/𝛾 }

𝑊 :( ®𝑢)→{1,2}
𝐷 :( ®𝑤 0 )→{1,2}

𝑊 :( ®𝑢)→{1,2}

Figure 4. Notable diagrams of Proposition 2.26, point (1), subcase 𝑡 = (𝜇𝛼.𝛽 |𝑠 |) [®𝑢], T = 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢], 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ |,𝛼 = 𝛽,𝛾 ≠

𝜂, 𝜂 = 𝛼 .

(𝜇𝛼.𝛼 |𝜇𝛾 .𝜂 |𝑠′ | | ) [ ®𝑢 ]

𝜇𝛼.⟨𝛼 |𝜇𝛾 .𝜂 |𝑠′ | | ⟩+𝛼 [ ®𝑢 ] (𝜇𝛼.𝜂 |𝑠′ {𝛼/𝛾 } | ) [ ®𝑢 ]

∑
𝑊

𝜇𝛼.𝛼 | (𝜇𝛾 .𝜂 | ⟨𝑠′ ⟩+𝛼 [ ®𝑤 0 ] | ) [ ®𝑤 1 ] | 𝜇𝛼.⟨𝜂 |𝑠′ {𝛼/𝛾 } | ⟩+𝛼 [ ®𝑢 ]

∑
𝑊

𝜇𝛼.𝛼 |𝜇𝛾 .𝜂 | ⟨ ⟨𝑠′ ⟩+𝛼 [ ®𝑤 0 ] ⟩+𝛾 [ ®𝑤 1 ] | | 𝜇𝛼.𝜂 | ⟨𝑠′ {𝛼/𝛾 }⟩+𝛼 [ ®𝑢 ] |

∑
𝑊

𝜇𝛼.𝜂 | ⟨ ⟨𝑠′ ⟩+𝛼 [ ®𝑤 0 ] ⟩+𝛾 [ ®𝑤 1 ] {𝛼/𝛾 } |

(𝛾≠𝜂)

𝑊 :( ®𝑢)→{1,2}

(𝜂≠𝛼 )

Figure 5. Notable diagrams of Proposition 2.26, point (1), subcase 𝑡 = (𝜇𝛼.𝛽 |𝑠 |) [®𝑢], T = 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢], 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ |,𝛼 = 𝛽,𝛾 ≠

𝜂, 𝜂 ≠ 𝛼 .
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(𝜇𝛼.𝛼 |𝜇𝛾 .𝛾 |𝑠′ | | ) [ ®𝑢 ]

𝜇𝛼.⟨𝛼 |𝜇𝛾 .𝛾 |𝑠′ | | ⟩+𝛼 [ ®𝑢 ] (𝜇𝛼.𝛼 |𝑠′ {𝛼/𝛾 } | ) [ ®𝑢 ]

∑
𝑊

𝜇𝛼.𝛼 | (𝜇𝛾 .𝛾 | ⟨𝑠′ ⟩+𝛼 [ ®𝑤 0 ] | ) [ ®𝑤 1 ] | 𝜇𝛼.⟨𝛼 |𝑠′ {𝛼/𝛾 } | ⟩+𝛼 [ ®𝑢 ]

∑
𝑊

∑
𝐷

𝜇𝛼.𝛼 |𝜇𝛾 .𝛾 | ( ⟨⟨𝑠′ ⟩+𝛼 [ ®𝑤 0 ] ⟩+𝛾 [ ®𝑑 0 ] ) [ ®𝑑 1 ] | | ∑
𝑊

𝜇𝛼.𝛼 | ( ⟨𝑠′ {𝛼/𝛾 }⟩+𝛼 [ ®𝑤 0 ] ) [ ®𝑤 1 ] |

∑
𝑊

∑
𝐷

𝜇𝛼.𝛼 | ( ⟨⟨𝑠′ ⟩+𝛼 [ ®𝑤 0 ] ⟩+𝛾 [ ®𝑑 0 ] ) [ ®𝑑 1 ] {𝛼/𝛾 } |

𝑊 :( ®𝑢)→{1,2}

𝐷 :( ®𝑤 1 )→{1,2} 𝑊 :( ®𝑢)→{1,2}

Figure 6. Notable diagrams of Proposition 2.26, point (1), subcase 𝑡 = (𝜇𝛼.𝛽 |𝑠 |) [®𝑢], T = 𝜇𝛼.⟨𝛽 |𝑠 |⟩+𝛼 [®𝑢], 𝑠 = 𝜇𝛾 .𝜂 |𝑠′ |,𝛼 = 𝛽, 𝜂 = 𝛾 .

𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝜇𝛾 ′ .𝜂′ |𝑠′ | | |

𝜇𝛾 .𝛿0 |𝜇𝛾 ′ .𝛿 ′1 |𝑠
′{𝛼/𝛽}| | 𝜇𝛾 .𝛼 |𝜇𝛽.𝛿 ′2 |𝑠

′{𝜂/𝛾 ′}| |

𝜇𝛾 .𝛿1 |𝑠′{𝛼/𝛽}{𝛿0/𝛾 ′}| = 𝜇𝛾 .𝛿2 |𝑠′{𝜂/𝛾 ′}{𝛼/𝛽}|

where 𝛿0 := 𝛿𝛼𝜂 (𝛽), 𝛿 ′1 := 𝛿𝛼
𝜂′ (𝛽), 𝛿1 := 𝛿

𝛿0
𝛿 ′1
(𝛾 ′), 𝛿 ′2 := 𝛿

𝜂

𝜂′ (𝛾 ′) and 𝛿2 := 𝛿𝛼
𝛿 ′2
(𝛽).

Figure 7. Notable diagrams of Proposition 2.26, point (1), subcase 𝑡 = 𝜇𝛾 .𝛼 |𝜇𝛽.𝜂 |𝑠 | |, T = 𝜇𝛾 .𝜂 |𝑠 |{𝛼/𝛽}, 𝑠 = 𝜇𝛾 ′ .𝜂′ |𝑠′ |.
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