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@ You have seen minimal logic

@ You have seen that it corresponds to the
simply-typed A-calculus

o In the sense that formulas = types and
cut-elimination = f-reduction

o Computational understanding of logic: proof
— program
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Curry-Howard formalises the computational understanding (BHK) of logic in
the strongest sense:
a proof x: AF-M: B is a (typed) program that computes the function
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@ 2nd order classical logic
© Operational semantics of A-calculus + callcc
@ Realisability and its adequacy to provability

@ Summary, Exercises, Bibliography
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@ 2nd order classical logic
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Formulas:
A = X | A=A
Proofs:
A, BF
A B—C AF

AF C

AlF
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© Operational semantics of A-calculus + callcc
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OPS via: programs run... E.g. Logic
B-reduction by themselves Mg N intuitionistic
by interaction
Abstract Machine | with execution | Mx 7™ — N* p classical

stacks
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OPS via: programs run... E.g. Logic
B-reduction by themselves Mg N intuitionistic
by interaction
Abstract Machine | with execution | Mx 7™ — N* p classical
stacks

Proof-Like terms P == x | Ax.P | PP | callcc
Terms M == x | Ax.M | MM | callcc | k.
Stacks © == [] | Munw

Operational Semantics via a (simplified) KAM:

Weak Head (push) MN o« T = M * Num
B-reduction (pop) Ax.M *x Nuwm — M{x:=N} «* T
Continuation (save) callcc x Mum — M * kpum
passing style (restore) kr x Mup — M * o
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Arena

Player Opponent
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Arena Weapons
Player Opponent Witnesses Counterwitnesses
kr * M:p
i} MeW(A) m € C(A)
M * ™
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Arena Weapons

Player Opponent Witnesses Counterwitnesses
k * M:p
MeW(A)

i) m € C(A)
k, e WA — 1)

= kr € W(=A) for allme C(A)
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Arena
Player Opponent

callcc % Mo
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Arena

Weapons

Player Opponent

callcc * M:m

Witnesses

MeW(=-4)

callcc € W(—-—A — A)

callcc IF ——A— A

Counterwitnesses

m € C(A)

11/19



Arena

Weapons

Player Opponent

callcc * M:m

Similar argument for

Ax.callccx IF ——A — A

Witnesses

MeW(=-4)

callcc € W(——A — A)

callcc IF ——A— A

and  Ax.callcc(A\y.xy

Counterwitnesses

m € C(A)

) F —-——A— A
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@ Realisability and its adequacy to provability
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Definition (Realisability semantics of formulas)

Ct:={teW|tLnx foralmeC} w C | LCWxC *
Tarski | {C0} | {t} 0 =
W( ):=c( )t Krivine | A | A* pole cons
C(X(er,-.-re)) = [X]([ea],-- -, [ex])
C(A — B) = W(A) xC(B)
C(Vc.A) = LgNC(A{c =m})
R C(A{Y = Q})
Q:Nm—P(C)

Realisability relation: M- A whenever M is a closed proof like term in W(A)
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Not only Ax.callcc(Ay.xy) IF —=—A — A but even:
F Ax. callec(Ay.xy) : ——A— A
In fact, typing = realising. The converse fails: that’s precisely what we want!

Adequacy Theorem
Let
X1 : A1, .., Xm i AnFM: B

and fix an interpretation of the (free) 1st and 2nd order variables of
Ai,...,An, B.
For all closed terms Ny, ...,N,,, we have:

N; € W(Al), ..., Ny, € W(Am) - M{}? = ﬁ} € W(B)
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In fact, typing = realising. The converse fails: that’s precisely what we want!

Adequacy Theorem
Let
X1 : A1, X A FM: B

and fix an interpretation of the (free) 1st and 2nd order variables of
Ai,...,An, B.
For all closed terms Ny, ...,N,,, we have:

Nt eW(AY), ..., Ny eW(A,) = M{}? = ﬁ} € W(B).

In other words, a proof x: A+ M: B defines a proof-term Ax.M that computes
(for each interpretation of variables and notion of winning process), the function

NeW(A) — M{x:=N}e W(B)

Realisability formalises BHK by extending the literal Curry-Howard one!
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In fact, typing = realising. The converse fails: that’s precisely what we want!

Adequacy Theorem
Let
x1: A1, ., X A FM: B

and fix an interpretation of the (free) 1st and 2nd order variables of
Ai, ..., Am, B.

For all closed terms Ny, ...,N,,, we have:
Ny €EW(AL), ..., N €EW(A,) = M{X:=N}ecW(B).
Corollary

Let T be a theory of PA2 (or ZF/+CH/+C+...). If all axioms A of T are
realised by programs Ny I A, then: x: AFM: B—=— M{x:=N}IF B.

E.g., A =countable/dependent axiom of choice, ultrafilter axiom on N,
Continuum Hypothesis, ...
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Moral of the story 1:

(The computational content of) Classical logic is about the interaction with
some notion of environment
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Moral of the story 1:

(The computational content of) Classical logic is about the interaction with
some notion of environment )
Proof.

True for all (that I know) computational approaches of classical logic: classical
realisability, Game Semantics, Linear Logic, Au-calculus, ——-+Dialectica ]
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@ Summary, Exercises, Bibliography
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@ We have seen proof-terms for classical 2nd
order logic

What have we

o We have given them an operational semantics learned today?

in terms of a KAM which manipulates
continuations o

o We have defined the realisability semantics by
refining Tarski

o We have seen that realisability is adequate wrt
provability
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o Look at our notes on the webpage of the course, there are plenty of
details, proofs and exercises.
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o Look at our notes on the webpage of the course, there are plenty of
details, proofs and exercises. Here’s one

Exercise

The 2nd order encoding of AV B is:
AV B = V°X. (A — X) = (B — X) — X. With that, show (by hand) that:

callcc(Ayvh. h(Ax. y(Azw. zx))) |- AV A,

This is actually the proof-term of a derivation of the excluded middle from
Consequentia Mirabilis (itself an instance of Peirce’s law). Do not use adequacy though.
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Exercise

The 2nd order encoding of AV B is:
AV B = V°X. (A — X) = (B — X) — X. With that, show (by hand) that:

callcc(Ayvh. h(Ax. y(Azw. zx))) |- AV A,

This is actually the proof-term of a derivation of the excluded middle from
Consequentia Mirabilis (itself an instance of Peirce’s law). Do not use adequacy though.

o The exercises have solutions (but try to do them by yourself before
looking at them!).

One million dollars exercise
Find a program M such that M IF full Axiom of Choice
[Hint (?): Krivine proved that one exists.|
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Summary, Exercises, Bibliography

@ Where the idea of callcc with Peirce law was introduced:
A formulae-as-type notion of control, Timothy G. Griffin, 1990,
https://dl.acm.org/doi/10.1145/96709.96714

e A standard introduction to the topic:
Realizability in classical logic, Jean-Louis Krivine, 2004,
https://www.irif.fr/ krivine/articles/Luminy04.pdf
@ A very nice and clear PhD manuscript on the topic:
On Forcing and Classical Realizability, Lionel Rieg, 2014,
https://www-verimag.imag.fr/ "riegl/assets/thesis-color.pdf
e To go further (one cool example among many possible):
A program for the full Axiom of Choice, Jean-Louis Krivine,

2021,
https://www.irif.fr/"krivine/articles/A_program_for_full_AC.pdf
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