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The λ-calculus,
from minimal to classical logic

Lecture 5:

Krivine’s approach to classical logic

Read the notes: they are full of details, proofs, explanations, exercises, bibliography!
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Previously...

You have seen minimal logic
You have seen that it corresponds to the
simply-typed λ-calculus
In the sense that formulas = types and
cut-elimination = β-reduction
Computational understanding of logic: proof
→ program

What have we
learned yesterday?
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Previously...

Curry-Howard formalises the computational understanding (BHK) of logic in
the strongest sense:
a proof x : A ⊢ M : B is a (typed) program that computes the function

N ∈ Proofs(A) 7→ nfβ(M{x := N}) ∈ Proofs(B)

...it actually works for richer and richer intuitionistic
logics (e.g. system F/2nd-order λ-calculus, MLTT’s etc)

What about classical logic?

Classical logic still has a computational content indeed!

type ⇝ realiser
purely functional ⇝ impure functional

Example
Classical realisability, ¬¬+Dialectica, λµ-calculus, λµµ̃-calculus,...
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Outline

1 2nd order classical logic

2 Operational semantics of λ-calculus + callcc

3 Realisability and its adequacy to provability

4 Summary, Exercises, Bibliography
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2nd order classical logic

Arithmetic expressions:

e ::= n | a | f(e, . . . , e) (for n ∈ N, a ∈ V1, f ∈ Sk)

Formulas:

A ::= X | A → A

X(e, . . . , e) | A → A | ∀c.A | ∀kX.A (for X ∈ Vk
2 )

Proofs:

x :

A,

y :

B ⊢

y :

B

x :

A ⊢

callcc :

((B → C) → B) → B

x :

A ⊢

M :

B → C

x :

A ⊢

N :

B

x :

A ⊢

M N :

C

x :

A,

y :

B ⊢

M :

C

x :

A ⊢

λy. M :

B → C

x :

A ⊢

M :

B

x :

A ⊢

M :

∀c.B

x :

A ⊢

M :

B

x :

A ⊢

M :

∀kY.B

x :

A ⊢

M :

∀c.B

x :

A ⊢

M :

B{c := e}

x :

A ⊢

M :

∀kY.B

x :

A ⊢

M :

B{Y := ⟨C, c1, . . . , ck⟩}

Proof-like terms:
M ::= x | M N | λx.M

| callcc
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Operational semantics of λ-calculus + callcc

1 2nd order classical logic
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Operational semantics of λ-calculus + callcc

OPS via: programs run... E.g. Logic
β-reduction by themselves M↠β N intuitionistic

Abstract Machine
by interaction
with execution

stacks
M ⋆ π → N ⋆ ρ classical

Proof-Like terms P ::= x | λx. P | P P | callcc

Terms M ::= x | λx. M | M M | callcc | kπ

Stacks π ::= [ ] | M :: π

Operational Semantics via a (simplified) KAM:

M N ⋆ π → M ⋆ N :: π
λx. M ⋆ N :: π → M{x := N} ⋆ π

callcc ⋆ M :: π → M ⋆ kπ :: π
kπ ⋆ M :: ρ → M ⋆ π

Weak Head
β-reduction

{
(push)
(pop)

Continuation
passing style

{
(save)

(restore)
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Operational semantics of λ-calculus + callcc

Arena

Player Opponent

kπ ⋆ M :: ρ

↓

M ⋆ π

Arena Weapons

Player Opponent Witnesses Counterwitnesses

kπ ⋆ M :: ρ

↓
M ∈ W(A)

kπ ∈ W(A → ⊥)
π ∈ C(A)

M ⋆ π

=⇒ kπ ∈ W(¬A) for all π ∈ C(A)
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Realisability and its adequacy to provability

Definition (Realisability semantics of formulas)

C⊥⊥ := {t ∈ W | t ⊥⊥ π for all π ∈ C}

W(_) := C(_)⊥⊥

W C ⊥⊥⊆W×C ∗
Tarski { } {†} ∅ ⇒
Krivine Λ Λ∗ pole cons

C(X(e1, . . . , ek)) = JXK (Je1K , . . . , JekK)

C(A → B) = W(A) ∗ C(B)

C(∀c.A) =
⋃

m∈N
C(A{c := m})

C(∀mY.A) =
⋃

Q:Nm→P(C)
C(A{Y := Q})

Realisability relation: M ⊩ A whenever M is a closed proof like term in W(A)
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Realisability and its adequacy to provability

Not only λx. callcc(λy. x y) ⊩ ¬¬A → A but even:

⊢ λx. callcc(λy. x y) : ¬¬A → A

In fact, typing ⇒ realising. The converse fails: that’s precisely what we want!

Adequacy Theorem
Let

x1 : A1, . . . , xm : Am ⊢ M : B

and fix an interpretation of the (free) 1st and 2nd order variables of
A1, . . . , Am, B.
For all closed terms N1, . . . , Nm, we have:

N1 ∈ W(A1) , . . . , Nm ∈ W(Am) =⇒ M{x⃗ := N⃗} ∈ W(B).
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Realisability and its adequacy to provability

In fact, typing ⇒ realising. The converse fails: that’s precisely what we want!

Adequacy Theorem
Let

x1 : A1, . . . , xm : Am ⊢ M : B

and fix an interpretation of the (free) 1st and 2nd order variables of
A1, . . . , Am, B.
For all closed terms N1, . . . , Nm, we have:

N1 ∈ W(A1) , . . . , Nm ∈ W(Am) =⇒ M{x⃗ := N⃗} ∈ W(B).

In other words, a proof x : A ⊢ M : B defines a proof-term λx. M that computes
(for each interpretation of variables and notion of winning process), the function

N ∈ W(A) 7→ M{x := N} ∈ W(B)

Realisability formalises BHK by extending the literal Curry-Howard one!
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In fact, typing ⇒ realising. The converse fails: that’s precisely what we want!

Adequacy Theorem
Let

x1 : A1, . . . , xm : Am ⊢ M : B

and fix an interpretation of the (free) 1st and 2nd order variables of
A1, . . . , Am, B.
For all closed terms N1, . . . , Nm, we have:

N1 ∈ W(A1) , . . . , Nm ∈ W(Am) =⇒ M{x⃗ := N⃗} ∈ W(B).

Corollary
Let T be a theory of PA2 (or ZF/+CH/+C+...). If all axioms A of T are
realised by programs NA ⊩ A, then: x : A ⊢ M : B =⇒ M{x := N} ⊩ B.

E.g., A =countable/dependent axiom of choice, ultrafilter axiom on N,
Continuum Hypothesis,...
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Realisability and its adequacy to provability

Moral of the story 1:
(The computational content of) Classical logic is about the interaction with
some notion of environment

Moral of the story 2:
Now that we disclosed the “hidden” computational content of classical logic, we
want to realise axioms, not only theorems!

Example
The theory of the formulas which admit a realiser is deductively closed.
Under mild assumption on the pole ⊥⊥, it is also non-contradictory.
Study its models.
In the case for ZFC, this is stronger than forcing!
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1 2nd order classical logic

2 Operational semantics of λ-calculus + callcc

3 Realisability and its adequacy to provability

4 Summary, Exercises, Bibliography
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Summary, Exercises, Bibliography

We have seen proof-terms for classical 2nd
order logic
We have given them an operational semantics
in terms of a KAM which manipulates
continuations
We have defined the realisability semantics by
refining Tarski
We have seen that realisability is adequate wrt
provability

What have we
learned today?
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Summary, Exercises, Bibliography

Look at our notes on the webpage of the course, there are plenty of
details, proofs and exercises.

Here’s one

Exercise
The 2nd order encoding of A ∨B is:
A ∨B := ∀0X. (A → X) → (B → X) → X. With that, show (by hand) that:

callcc(λyvh. h(λx. y(λzw. zx))) ⊩ A ∨ ¬A.

This is actually the proof-term of a derivation of the excluded middle from
Consequentia Mirabilis (itself an instance of Peirce’s law).Do not use adequacy though.

The exercises have solutions (but try to do them by yourself before
looking at them!).

One million dollars exercise
Find a program M such that M ⊩ full Axiom of Choice
[Hint (?): Krivine proved that one exists.]

18 / 19
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Summary, Exercises, Bibliography

Where the idea of callcc with Peirce law was introduced:
A formulae-as-type notion of control, Timothy G. Griffin, 1990,
https://dl.acm.org/doi/10.1145/96709.96714

A standard introduction to the topic:
Realizability in classical logic, Jean-Louis Krivine, 2004,
https://www.irif.fr/~krivine/articles/Luminy04.pdf

A very nice and clear PhD manuscript on the topic:
On Forcing and Classical Realizability, Lionel Rieg, 2014,
https://www-verimag.imag.fr/~riegl/assets/thesis-color.pdf

To go further (one cool example among many possible):
A program for the full Axiom of Choice, Jean-Louis Krivine,
2021,
https://www.irif.fr/~krivine/articles/A_program_for_full_AC.pdf
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