
The λ-Calculus,
from Minimal to Classical Logic

Webpage of the course

Davide Barbarossa Giulio Guerrieri
db2437@bath.ac.uk g.guerrieri@sussex.ac.uk

Dept of Computer Science Dept of Ìnformatics

ESSLLI Summer School, Bochum (Germany) 28/07/2025 – 01/08/2025

1 / 39

https://davidebarbarossa12.github.io/Enseignements/2024-25/ESSLLI.html
db2437@bath.ac.uk
g.guerrieri@sussex.ac.uk

Previously...

What does denotational semantics is and is for.
Some abstract properties that an algebraic
structure has to fulfill to be a denotational
semantics of the untyped λ-calculus.
A taste of category theory.
The notions of Cartesian closed category and
reflexive object.
How to interpret the untyped λ-calculus in a
reflexive object of a Cartesian closed category.

What have we
learned yesterday?

2 / 39

The λ-Calculus,
from Minimal to Classical Logic

Lecture 4:

Curry-Howard and Minimal Logic

Read the notes: they are full of details, proofs, explanations, exercises, bibliography!

Giulio Guerrieri
g.guerrieri@sussex.ac.uk

Dept of Informatics

ESSLLI Summer School, Bochum (Germany) 31/07/2025
3 / 39

https://davidebarbarossa12.github.io/Enseignements/2024-25/esslli25_notes4.pdf
g.guerrieri@sussex.ac.uk

Outline

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

4 / 39

From the Untyped to the Simply Typed λ-Calculus

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

5 / 39

From the Untyped to the Simply Typed λ-Calculus

The “philosophy” behind the untyped λ-calculus:
1 Everything is a function, including values such as Booleans and natural numbers.

true = λx.λy.x = x 7→ (y 7→ x) 2 = λf.λx.f(fx) = f 7→ (x 7→ f(f(x)))

2 Functions are treated anonymously, that is, without giving them a name.

id(x) = x ; x 7→ x proj21(x, y) = x ; (x, y) 7→ x

3 Functions of several arguments are transformed into ones of a single argument:

(x, y) 7→ x ; x 7→ (y 7→ x) = λx.λy.x (currying)

4 Functions can be applied to functions and can return functions (higher-order).

(x 7→ x)5 = 5 (x 7→ x)(y 7→ y2) = y 7→ y2

5 There are no restrictions when applying functions to other functions (untyped).

The untyped feature sounds suspicious, it looks too wild (see Curry’s paradox).
Question: Can we drop it and keep all the other features?

6 / 39

https://en.wikipedia.org/wiki/Curry's_paradox

From the Untyped to the Simply Typed λ-Calculus

The “philosophy” behind the untyped λ-calculus:
1 Everything is a function, including values such as Booleans and natural numbers.

true = λx.λy.x = x 7→ (y 7→ x) 2 = λf.λx.f(fx) = f 7→ (x 7→ f(f(x)))

2 Functions are treated anonymously, that is, without giving them a name.

id(x) = x ; x 7→ x proj21(x, y) = x ; (x, y) 7→ x

3 Functions of several arguments are transformed into ones of a single argument:

(x, y) 7→ x ; x 7→ (y 7→ x) = λx.λy.x (currying)

4 Functions can be applied to functions and can return functions (higher-order).

(x 7→ x)5 = 5 (x 7→ x)(y 7→ y2) = y 7→ y2

5 There are no restrictions when applying functions to other functions (untyped).

The untyped feature sounds suspicious, it looks too wild (see Curry’s paradox).
Question: Can we drop it and keep all the other features?

6 / 39

https://en.wikipedia.org/wiki/Curry's_paradox

From the Untyped to the Simply Typed λ-Calculus

The “philosophy” behind the untyped λ-calculus:
1 Everything is a function, including values such as Booleans and natural numbers.

true = λx.λy.x = x 7→ (y 7→ x) 2 = λf.λx.f(fx) = f 7→ (x 7→ f(f(x)))

2 Functions are treated anonymously, that is, without giving them a name.

id(x) = x ; x 7→ x proj21(x, y) = x ; (x, y) 7→ x

3 Functions of several arguments are transformed into ones of a single argument:

(x, y) 7→ x ; x 7→ (y 7→ x) = λx.λy.x (currying)

4 Functions can be applied to functions and can return functions (higher-order).

(x 7→ x)5 = 5 (x 7→ x)(y 7→ y2) = y 7→ y2

5 There are no restrictions when applying functions to other functions (untyped).

The untyped feature sounds suspicious, it looks too wild (see Curry’s paradox).
Question: Can we drop it and keep all the other features?

6 / 39

https://en.wikipedia.org/wiki/Curry's_paradox

From the Untyped to the Simply Typed λ-Calculus

The “philosophy” behind the untyped λ-calculus:
1 Everything is a function, including values such as Booleans and natural numbers.

true = λx.λy.x = x 7→ (y 7→ x) 2 = λf.λx.f(fx) = f 7→ (x 7→ f(f(x)))

2 Functions are treated anonymously, that is, without giving them a name.

id(x) = x ; x 7→ x proj21(x, y) = x ; (x, y) 7→ x

3 Functions of several arguments are transformed into ones of a single argument:

(x, y) 7→ x ; x 7→ (y 7→ x) = λx.λy.x (currying)

4 Functions can be applied to functions and can return functions (higher-order).

(x 7→ x)5 = 5 (x 7→ x)(y 7→ y2) = y 7→ y2

5 There are no restrictions when applying functions to other functions (untyped).

The untyped feature sounds suspicious, it looks too wild (see Curry’s paradox).
Question: Can we drop it and keep all the other features?

6 / 39

https://en.wikipedia.org/wiki/Curry's_paradox

From the Untyped to the Simply Typed λ-Calculus

The “philosophy” behind the untyped λ-calculus:
1 Everything is a function, including values such as Booleans and natural numbers.

true = λx.λy.x = x 7→ (y 7→ x) 2 = λf.λx.f(fx) = f 7→ (x 7→ f(f(x)))

2 Functions are treated anonymously, that is, without giving them a name.

id(x) = x ; x 7→ x proj21(x, y) = x ; (x, y) 7→ x

3 Functions of several arguments are transformed into ones of a single argument:

(x, y) 7→ x ; x 7→ (y 7→ x) = λx.λy.x (currying)

4 Functions can be applied to functions and can return functions (higher-order).

(x 7→ x)5 = 5 (x 7→ x)(y 7→ y2) = y 7→ y2

5 There are no restrictions when applying functions to other functions (untyped).

The untyped feature sounds suspicious, it looks too wild (see Curry’s paradox).
Question: Can we drop it and keep all the other features?

6 / 39

https://en.wikipedia.org/wiki/Curry's_paradox

From the Untyped to the Simply Typed λ-Calculus

The “philosophy” behind the untyped λ-calculus:
1 Everything is a function, including values such as Booleans and natural numbers.

true = λx.λy.x = x 7→ (y 7→ x) 2 = λf.λx.f(fx) = f 7→ (x 7→ f(f(x)))

2 Functions are treated anonymously, that is, without giving them a name.

id(x) = x ; x 7→ x proj21(x, y) = x ; (x, y) 7→ x

3 Functions of several arguments are transformed into ones of a single argument:

(x, y) 7→ x ; x 7→ (y 7→ x) = λx.λy.x (currying)

4 Functions can be applied to functions and can return functions (higher-order).

(x 7→ x)5 = 5 (x 7→ x)(y 7→ y2) = y 7→ y2

5 There are no restrictions when applying functions to other functions (untyped).

The untyped feature sounds suspicious, it looks too wild (see Curry’s paradox).
Question: Can we drop it and keep all the other features?

6 / 39

https://en.wikipedia.org/wiki/Curry's_paradox

From the Untyped to the Simply Typed λ-Calculus

People seem very unhappy about the untyped λ-calculus!

The Working Mathematician: Is the untyped λ-calculus a real theory of (computable)
functions? Are you kidding me? In mathematics functions have domain and
codomains, their arguments can’t live outside their domain.

The Working Computer Scientist: I can’t take the untyped λ-calculus as a serious
programming language! There are no types! I can’t give any specifications to my
programs. I can write nonsensical programs that return nonsensical outputs.

2 true = (λf.λx.f(fx))(λz.λy.z) ↠∗
β λx.λy.λz.x = proj31

The Working Logician: I want my money back! You promised me a course about logic.
After three days, I haven’t seen any logic yet! You scammer!

Let us try to make the working mathematician, computer scientist and logician happy.

7 / 39

From the Untyped to the Simply Typed λ-Calculus

People seem very unhappy about the untyped λ-calculus!

The Working Mathematician: Is the untyped λ-calculus a real theory of (computable)
functions? Are you kidding me? In mathematics functions have domain and
codomains, their arguments can’t live outside their domain.

The Working Computer Scientist: I can’t take the untyped λ-calculus as a serious
programming language! There are no types! I can’t give any specifications to my
programs. I can write nonsensical programs that return nonsensical outputs.

2 true = (λf.λx.f(fx))(λz.λy.z) ↠∗
β λx.λy.λz.x = proj31

The Working Logician: I want my money back! You promised me a course about logic.
After three days, I haven’t seen any logic yet! You scammer!

Let us try to make the working mathematician, computer scientist and logician happy.

7 / 39

From the Untyped to the Simply Typed λ-Calculus

People seem very unhappy about the untyped λ-calculus!

The Working Mathematician: Is the untyped λ-calculus a real theory of (computable)
functions? Are you kidding me? In mathematics functions have domain and
codomains, their arguments can’t live outside their domain.

The Working Computer Scientist: I can’t take the untyped λ-calculus as a serious
programming language! There are no types! I can’t give any specifications to my
programs. I can write nonsensical programs that return nonsensical outputs.

2 true = (λf.λx.f(fx))(λz.λy.z) ↠∗
β λx.λy.λz.x = proj31

The Working Logician: I want my money back! You promised me a course about logic.
After three days, I haven’t seen any logic yet! You scammer!

Let us try to make the working mathematician, computer scientist and logician happy.

7 / 39

From the Untyped to the Simply Typed λ-Calculus

People seem very unhappy about the untyped λ-calculus!

The Working Mathematician: Is the untyped λ-calculus a real theory of (computable)
functions? Are you kidding me? In mathematics functions have domain and
codomains, their arguments can’t live outside their domain.

The Working Computer Scientist: I can’t take the untyped λ-calculus as a serious
programming language! There are no types! I can’t give any specifications to my
programs. I can write nonsensical programs that return nonsensical outputs.

2 true = (λf.λx.f(fx))(λz.λy.z) ↠∗
β λx.λy.λz.x = proj31

The Working Logician: I want my money back! You promised me a course about logic.
After three days, I haven’t seen any logic yet! You scammer!

Let us try to make the working mathematician, computer scientist and logician happy.

7 / 39

From the Untyped to the Simply Typed λ-Calculus

Let M ∈ Λ with x⃗ = (x1, . . . , xn) adequate for M.
In the untyped λ-calculus, the interpretation of M is JMKx⃗ : Un → U , given a
reflexive object (U, λ, fun) in a CCC (see Day 3) ; M can be seen as a function

JMKx⃗ : U × n. . .× U −→ U

(a1, . . . , an) 7→ M{x1 :=a1, . . . , xn :=an}

Because of the retraction (λ : U⇒U → U, fun : U → U⇒U), every function lives
in U and can be applied to any other function (including itself!).

Let us restrict the domain of our functions ; We would like to see M as a function

JMKx⃗ : A1 × · · · ×An −→ B

(a1, . . . , an) 7→ M{x1 :=a1, . . . , xn :=an}

1 What are the domains A1, . . . , An?
2 What is the codomain B? Should it depend on M?
3 Which type discipline we should follow?
4 Does it restrict the λ-terms that can be built?

8 / 39

From the Untyped to the Simply Typed λ-Calculus

Let M ∈ Λ with x⃗ = (x1, . . . , xn) adequate for M.
In the untyped λ-calculus, the interpretation of M is JMKx⃗ : Un → U , given a
reflexive object (U, λ, fun) in a CCC (see Day 3) ; M can be seen as a function

JMKx⃗ : U × n. . .× U −→ U

(a1, . . . , an) 7→ M{x1 :=a1, . . . , xn :=an}

Because of the retraction (λ : U⇒U → U, fun : U → U⇒U), every function lives
in U and can be applied to any other function (including itself!).

Let us restrict the domain of our functions ; We would like to see M as a function

JMKx⃗ : A1 × · · · ×An −→ B

(a1, . . . , an) 7→ M{x1 :=a1, . . . , xn :=an}

1 What are the domains A1, . . . , An?
2 What is the codomain B? Should it depend on M?
3 Which type discipline we should follow?
4 Does it restrict the λ-terms that can be built?

8 / 39

From the Untyped to the Simply Typed λ-Calculus

Let M ∈ Λ with x⃗ = (x1, . . . , xn) adequate for M.
In the untyped λ-calculus, the interpretation of M is JMKx⃗ : Un → U , given a
reflexive object (U, λ, fun) in a CCC (see Day 3) ; M can be seen as a function

JMKx⃗ : U × n. . .× U −→ U

(a1, . . . , an) 7→ M{x1 :=a1, . . . , xn :=an}

Because of the retraction (λ : U⇒U → U, fun : U → U⇒U), every function lives
in U and can be applied to any other function (including itself!).

Let us restrict the domain of our functions ; We would like to see M as a function

JMKx⃗ : A1 × · · · ×An −→ B

(a1, . . . , an) 7→ M{x1 :=a1, . . . , xn :=an}

1 What are the domains A1, . . . , An?
2 What is the codomain B? Should it depend on M?
3 Which type discipline we should follow?
4 Does it restrict the λ-terms that can be built?

8 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce types to get these restrictions. What are some basic rules for typing?
They should express the type of a term depending on the types of its free variables.

1 If x1 : A1, . . . , xn : An then xi : Ai for every i ∈ {1, . . . , n}.

2 If M : B under the environment x1 : C1, . . . , xn : Cn, y : A,

(that is, JMKx⃗,y : C1 × · · · × Cn ×A −→ B)

then λx.M : A ⇒ B under the environment x1 : C1, . . . , xn : Cn.

(that is, Jλy.MKx⃗ : C1 × · · · × Cn −→ A⇒B)

3 If M : A ⇒ B and N : A under the common environment x1 : C1, . . . , xn : Cn,

(that is, JMKx⃗ : C1 × · · · × Cn −→ A⇒B and JNKx⃗ : C1 × · · · × Cn −→ A)

then M N : B under the same environment.

(that is, JM NKx⃗ : C1 × · · · × Cn −→ B)

Rmk: This naive approach seems to make sense.
Types only require a connective ⇒.
The rules above sound similar to inference rules.
Rule 2 does something similar to curry(·) in a CCC.
Rule 3 does something similar to evA,B in a CCC.

9 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce types to get these restrictions. What are some basic rules for typing?
They should express the type of a term depending on the types of its free variables.

1 If x1 : A1, . . . , xn : An then xi : Ai for every i ∈ {1, . . . , n}.
2 If M : B under the environment x1 : C1, . . . , xn : Cn, y : A,

(that is, JMKx⃗,y : C1 × · · · × Cn ×A −→ B)

then λx.M : A ⇒ B under the environment x1 : C1, . . . , xn : Cn.

(that is, Jλy.MKx⃗ : C1 × · · · × Cn −→ A⇒B)

3 If M : A ⇒ B and N : A under the common environment x1 : C1, . . . , xn : Cn,

(that is, JMKx⃗ : C1 × · · · × Cn −→ A⇒B and JNKx⃗ : C1 × · · · × Cn −→ A)

then M N : B under the same environment.

(that is, JM NKx⃗ : C1 × · · · × Cn −→ B)

Rmk: This naive approach seems to make sense.
Types only require a connective ⇒.
The rules above sound similar to inference rules.
Rule 2 does something similar to curry(·) in a CCC.
Rule 3 does something similar to evA,B in a CCC.

9 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce types to get these restrictions. What are some basic rules for typing?
They should express the type of a term depending on the types of its free variables.

1 If x1 : A1, . . . , xn : An then xi : Ai for every i ∈ {1, . . . , n}.
2 If M : B under the environment x1 : C1, . . . , xn : Cn, y : A,

(that is, JMKx⃗,y : C1 × · · · × Cn ×A −→ B)

then λx.M : A ⇒ B under the environment x1 : C1, . . . , xn : Cn.

(that is, Jλy.MKx⃗ : C1 × · · · × Cn −→ A⇒B)

3 If M : A ⇒ B and N : A under the common environment x1 : C1, . . . , xn : Cn,

(that is, JMKx⃗ : C1 × · · · × Cn −→ A⇒B and JNKx⃗ : C1 × · · · × Cn −→ A)

then M N : B under the same environment.

(that is, JM NKx⃗ : C1 × · · · × Cn −→ B)

Rmk: This naive approach seems to make sense.
Types only require a connective ⇒.
The rules above sound similar to inference rules.
Rule 2 does something similar to curry(·) in a CCC.
Rule 3 does something similar to evA,B in a CCC.

9 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce types to get these restrictions. What are some basic rules for typing?
They should express the type of a term depending on the types of its free variables.

1 If x1 : A1, . . . , xn : An then xi : Ai for every i ∈ {1, . . . , n}.
2 If M : B under the environment x1 : C1, . . . , xn : Cn, y : A,

(that is, JMKx⃗,y : C1 × · · · × Cn ×A −→ B)

then λx.M : A ⇒ B under the environment x1 : C1, . . . , xn : Cn.

(that is, Jλy.MKx⃗ : C1 × · · · × Cn −→ A⇒B)

3 If M : A ⇒ B and N : A under the common environment x1 : C1, . . . , xn : Cn,

(that is, JMKx⃗ : C1 × · · · × Cn −→ A⇒B and JNKx⃗ : C1 × · · · × Cn −→ A)

then M N : B under the same environment.

(that is, JM NKx⃗ : C1 × · · · × Cn −→ B)

Rmk: This naive approach seems to make sense.
Types only require a connective ⇒.
The rules above sound similar to inference rules.
Rule 2 does something similar to curry(·) in a CCC.
Rule 3 does something similar to evA,B in a CCC.

9 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce the simply typed λ-calculus in Church-style (STLC).

Types: A,B ::= X | A ⇒ B given a set of ground types ranged over by X,Y, Z . . .

(λ-)Terms: s, t ::= x | λxA.t | st

Environment: function from finitely many variables to types, noted x1 :A1, . . . , xn :An.
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x :A ⊢ x :A

Γ, x :A ⊢ t : B
λ

Γ ⊢ λxA.t : A ⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx.t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))
1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x} (possibly not well-typed)

10 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce the simply typed λ-calculus in Church-style (STLC).

Types: A,B ::= X | A ⇒ B given a set of ground types ranged over by X,Y, Z . . .

(λ-)Terms: s, t ::= x | λxA.t | st

Environment: function from finitely many variables to types, noted x1 :A1, . . . , xn :An.
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x :A ⊢ x :A

Γ, x :A ⊢ t : B
λ

Γ ⊢ λxA.t : A ⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx.t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))
1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x} (possibly not well-typed)

10 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce the simply typed λ-calculus in Church-style (STLC).

Types: A,B ::= X | A ⇒ B given a set of ground types ranged over by X,Y, Z . . .

(λ-)Terms: s, t ::= x | λxA.t | st

Environment: function from finitely many variables to types, noted x1 :A1, . . . , xn :An.
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x :A ⊢ x :A

Γ, x :A ⊢ t : B
λ

Γ ⊢ λxA.t : A ⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx.t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))
1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x} (possibly not well-typed)

10 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce the simply typed λ-calculus in Church-style (STLC).

Types: A,B ::= X | A ⇒ B given a set of ground types ranged over by X,Y, Z . . .

(λ-)Terms: s, t ::= x | λxA.t | st

Environment: function from finitely many variables to types, noted x1 :A1, . . . , xn :An.
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x :A ⊢ x :A

Γ, x :A ⊢ t : B
λ

Γ ⊢ λxA.t : A ⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx.t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))
1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x} (possibly not well-typed)

10 / 39

From the Untyped to the Simply Typed λ-Calculus

Let us introduce the simply typed λ-calculus in Church-style (STLC).

Types: A,B ::= X | A ⇒ B given a set of ground types ranged over by X,Y, Z . . .

(λ-)Terms: s, t ::= x | λxA.t | st

Environment: function from finitely many variables to types, noted x1 :A1, . . . , xn :An.
The well-typed terms are the ones that can be constructed via the typing rules below.

var
Γ, x :A ⊢ x :A

Γ, x :A ⊢ t : B
λ

Γ ⊢ λxA.t : A ⇒ B

Γ ⊢ s : B ⇒ A Γ ⊢ t : B
@

Γ ⊢ st : A

The free variables of a term t are the variables that are not bound to a λ. Formally,

fv(x) = {x} fv(st) = fv(s) ∪ fv(t) fv(λx.t) = fv(t) \ {x}

Proposition (If Γ ⊢ t : A is derivable , Γ is essentially a type assignment for fv(t))
1 If Γ ⊢ t : A is derivable, then so is Γ, x : B ⊢ t : A, for any type B and x /∈ dom(Γ).
2 If Γ ⊢ t : A is derivable, then fv(t) ⊆ dom(Γ) and Γ↾fv(t) ⊢ t : A is derivable.

β-reduction (t{s/x} is the capture-avoiding substitution of s for the free occurrences of x in t):

(λxA.t)s →β t{s/x} (possibly not well-typed)

10 / 39

From the Untyped to the Simply Typed λ-Calculus

Rmk: λxX.x and λxX⇒X.x are different terms in Church-style, because X ̸= X ⇒ X.
Idea: In Church-style STLC, types are intrinsic to terms (static typing, a priori).

Syntax-directed: The search for a derivation is uniquely determined by the λ-term.
; To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule (if any).

Lemma (Typability of subterms, Substitution)
1 Let t a term. If t is well-typed then so is every subterm of t.
2 If Γ, x : A ⊢ t : B and Γ ⊢ s : A are derivable, then so is Γ ⊢ t{s/x} : B.

Proof. Both points are proved by induction on t.

Theorem (Subject reduction)

Let t →β t′. If Γ ⊢ t : A is derivable then so is Γ ⊢ t′ : A.

Proof. By induction on the definition of t →β t′, using the substitution lemma.

This means that well-typed terms are closed under β-reduction. But well-typed terms
are not closed under β-expansion: Consider (λzZ.x)(δδ) →β x where δ = λyY.yy.

11 / 39

From the Untyped to the Simply Typed λ-Calculus

Rmk: λxX.x and λxX⇒X.x are different terms in Church-style, because X ̸= X ⇒ X.
Idea: In Church-style STLC, types are intrinsic to terms (static typing, a priori).

Syntax-directed: The search for a derivation is uniquely determined by the λ-term.
; To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule (if any).

Lemma (Typability of subterms, Substitution)
1 Let t a term. If t is well-typed then so is every subterm of t.
2 If Γ, x : A ⊢ t : B and Γ ⊢ s : A are derivable, then so is Γ ⊢ t{s/x} : B.

Proof. Both points are proved by induction on t.

Theorem (Subject reduction)

Let t →β t′. If Γ ⊢ t : A is derivable then so is Γ ⊢ t′ : A.

Proof. By induction on the definition of t →β t′, using the substitution lemma.

This means that well-typed terms are closed under β-reduction. But well-typed terms
are not closed under β-expansion: Consider (λzZ.x)(δδ) →β x where δ = λyY.yy.

11 / 39

From the Untyped to the Simply Typed λ-Calculus

Rmk: λxX.x and λxX⇒X.x are different terms in Church-style, because X ̸= X ⇒ X.
Idea: In Church-style STLC, types are intrinsic to terms (static typing, a priori).

Syntax-directed: The search for a derivation is uniquely determined by the λ-term.
; To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule (if any).

Lemma (Typability of subterms, Substitution)
1 Let t a term. If t is well-typed then so is every subterm of t.
2 If Γ, x : A ⊢ t : B and Γ ⊢ s : A are derivable, then so is Γ ⊢ t{s/x} : B.

Proof. Both points are proved by induction on t.

Theorem (Subject reduction)

Let t →β t′. If Γ ⊢ t : A is derivable then so is Γ ⊢ t′ : A.

Proof. By induction on the definition of t →β t′, using the substitution lemma.

This means that well-typed terms are closed under β-reduction. But well-typed terms
are not closed under β-expansion: Consider (λzZ.x)(δδ) →β x where δ = λyY.yy.

11 / 39

From the Untyped to the Simply Typed λ-Calculus

Rmk: λxX.x and λxX⇒X.x are different terms in Church-style, because X ̸= X ⇒ X.
Idea: In Church-style STLC, types are intrinsic to terms (static typing, a priori).

Syntax-directed: The search for a derivation is uniquely determined by the λ-term.
; To build a derivation D of Γ ⊢ t : A, just look at t to know the last rule (if any).

Lemma (Typability of subterms, Substitution)
1 Let t a term. If t is well-typed then so is every subterm of t.
2 If Γ, x : A ⊢ t : B and Γ ⊢ s : A are derivable, then so is Γ ⊢ t{s/x} : B.

Proof. Both points are proved by induction on t.

Theorem (Subject reduction)

Let t →β t′. If Γ ⊢ t : A is derivable then so is Γ ⊢ t′ : A.

Proof. By induction on the definition of t →β t′, using the substitution lemma.

This means that well-typed terms are closed under β-reduction. But well-typed terms
are not closed under β-expansion: Consider (λzZ.x)(δδ) →β x where δ = λyY.yy.

11 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

axz
Γ ⊢ z :B⇒C

axx
Γ ⊢ x :A

axy
Γ ⊢ y :A⇒B ⇒e

x :A, y :A⇒B, z :B⇒C ⊢ xy : B ⇒e
x :A, y :A⇒B, z :B⇒C ⊢ z(xy) : C

⇒x
i

y :A⇒B, z :B⇒C ⊢ λxA.z(xy) : A⇒C
⇒z

i
y :A⇒B ⊢ λzB⇒C.λxA.z(xy) : (B⇒C) ⇒ A⇒C

⇒y
i⊢ λyA⇒B.λzB⇒C.λxA.z(xy) : (A⇒B) ⇒ (B⇒C) ⇒ A⇒C

where Γ = x : A, y : A⇒B, z : B⇒C.

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

axx
Γ ⊢ x : A⇒B⇒C

axz
Γ ⊢ z : A ⇒e

z : A, y : A⇒B, x : A⇒B⇒C ⊢ xz : B ⇒ C

axy
Γ ⊢ y : A⇒B

axz
Γ ⊢ z : A

⇒e
z : A, y : A⇒B, x : A⇒B⇒C ⊢ yz : B

⇒e
A,A ⇒ B,A ⇒ (B ⇒ C) ⊢ xz(yz) : C

⇒z
i

A ⇒ B,A ⇒ (B ⇒ C) ⊢ λz.xz(yz) : A ⇒ C
⇒y

iA ⇒ (B ⇒ C) ⊢ λy.λz.xz(yz) : (A ⇒ B) ⇒ (A ⇒ C)
⇒x

i⊢ λx.λy.λz.xz(yz) : (A ⇒ (B ⇒ C)) ⇒ (A ⇒ B) ⇒ (A ⇒ C)

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

Examples
1 Prove that xx cannot be well-typed with any type A and any environment Γ.

By syntax-direction, a derivation of xx : A must have the form below
varx

x : B⇒A ⊢ x : B⇒ A
varx

x : B ⊢ x : B
@

Γ ⊢ xx : A

but this is not a derivation because B = B⇒A should hold, which is impossible.
2 Prove that δA = λxA.xx and δAδA cannot be well-typed with any A,Γ.

If δA and δAδA were well-typed for some type A and environment Γ, so would be
their subterm xx by Lemma 1 (p. 11), but this is impossible by the previous point.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

Examples
1 Prove that xx cannot be well-typed with any type A and any environment Γ.

By syntax-direction, a derivation of xx : A must have the form below
varx

x : B⇒A ⊢ x : B⇒ A
varx

x : B ⊢ x : B
@

Γ ⊢ xx : A

but this is not a derivation because B = B⇒A should hold, which is impossible.

2 Prove that δA = λxA.xx and δAδA cannot be well-typed with any A,Γ.

If δA and δAδA were well-typed for some type A and environment Γ, so would be
their subterm xx by Lemma 1 (p. 11), but this is impossible by the previous point.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

Examples
1 Prove that xx cannot be well-typed with any type A and any environment Γ.

By syntax-direction, a derivation of xx : A must have the form below
varx

x : B⇒A ⊢ x : B⇒ A
varx

x : B ⊢ x : B
@

Γ ⊢ xx : A

but this is not a derivation because B = B⇒A should hold, which is impossible.
2 Prove that δA = λxA.xx and δAδA cannot be well-typed with any A,Γ.

If δA and δAδA were well-typed for some type A and environment Γ, so would be
their subterm xx by Lemma 1 (p. 11), but this is impossible by the previous point.

12 / 39

From the Untyped to the Simply Typed λ-Calculus

Some examples of derivations in STLC (⇒ associates to the right).

axx
x :A ⊢ x : A

axx
x :A ⊢ x : A ⇒x

i
⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒x
i

y : B ⊢ λxA.x : A⇒A

axx
x :A, y :B ⊢ x : A

⇒y
i

x :A ⊢ λyB.x : B⇒A
⇒x

i
⊢ λxA.λyB.x : A⇒B⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A

axx
x :A, y :A ⊢ x :A

⇒x
i

y :A ⊢ λxA.x :A⇒A
⇒y

i⊢ λyA.λxA.x :A⇒A⇒A

axx
x :A, y :A ⊢ x :A

⇒y
i

x :A ⊢ λyA.x :A⇒A
⇒x

i
⊢ λxA.λyA.x :A⇒A⇒A

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.

Examples
1 Prove that xx cannot be well-typed with any type A and any environment Γ.

By syntax-direction, a derivation of xx : A must have the form below
varx

x : B⇒A ⊢ x : B⇒ A
varx

x : B ⊢ x : B
@

Γ ⊢ xx : A

but this is not a derivation because B = B⇒A should hold, which is impossible.
2 Prove that δA = λxA.xx and δAδA cannot be well-typed with any A,Γ.

If δA and δAδA were well-typed for some type A and environment Γ, so would be
their subterm xx by Lemma 1 (p. 11), but this is impossible by the previous point.

12 / 39

Natural Deduction for Minimal Logic

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

13 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.

14 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.

14 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.

14 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
The definition is by induction on D, when D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A.

D = axx

Γ, x : A ⊢ A : then D{D′/x} = D′.
D = axy

Γ, x : A ⊢ B where x ̸= y: then y ∈ dom(Γ) and D{D′/x} = axy

Γ ⊢ B .

Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.

14 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
The definition is by induction on D, when D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A.

D = axx

Γ, x : A ⊢ A : then D{D′/x} = D′.
D = axy

Γ, x : A ⊢ B where x ̸= y: then y ∈ dom(Γ) and D{D′/x} = axy

Γ ⊢ B .

D =

... D1

Γ, x :A ⊢ C⇒B

... D2

Γ, x :A ⊢ C
@

Γ, x :A ⊢ B

: then D{D′/x} =

... D1{D′/x}
Γ ⊢ C⇒B

... D2{D′/x}
Γ ⊢ C

@
Γ ⊢ B

.

Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.

14 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
The definition is by induction on D, when D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A.

D = axx

Γ, x : A ⊢ A : then D{D′/x} = D′.
D = axy

Γ, x : A ⊢ B where x ̸= y: then y ∈ dom(Γ) and D{D′/x} = axy

Γ ⊢ B .

D =

... D0

Γ, x :A, y :C ⊢ D
⇒y

iΓ, x :A ⊢ C⇒D

with y /∈ {x} ∪ dom(Γ): so D{D′/x} =

... D0{D̂′/x}
Γ, y :C ⊢ D

⇒y
iΓ ⊢ C⇒D

where D̂′ is obtained from D′ by adding y :C to the environment of each ax rule.

Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.

14 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.

14 / 39

Natural Deduction for Minimal Logic

We introduce natural deduction for minimal (= implicative intuitionistic) logic (ND).
The types used in the STLC are exactly the formulas of minimal logic.

A sequent is a pair Γ ⊢ A where Γ is an environment and A is a type of STLC.
A derivation in ND is a tree built up from the inference rules below.

axx

Γ, x :A ⊢ A
Γ, x :A ⊢ B

⇒x
i

Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A ⇒e

Γ ⊢ B

Theorem (Soundness and completeness)
A sequent x1 : A1, . . . , xn : An ⊢ B is derivable in ND if and only if
A1 ⇒ · · · ⇒ An ⇒ B is valid in minimal logic.

D{D′/x} stands for the substitution of derivation D′ for ax rules labeled by x in D.
Rmk: If D proves Γ, x : A ⊢ B and D′ proves Γ ⊢ A, then D{D′/x} proves Γ ⊢ B.

cut-elimination:

... D1

Γ, x : A ⊢ B
⇒x

i
Γ ⊢ A ⇒ B

... D2

Γ ⊢ A ⇒e

Γ ⊢ B

→cut

... D1{D2/x}
Γ ⊢ B

Rmk: Variable labels on ax and ⇒i are crucial to define cut-elimin. and substitution.
14 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

⇒y
i⊢ A ⇒ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

⇒y
i⊢ A ⇒ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

⇒y
i⊢ A ⇒ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

⇒y
i⊢ A ⇒ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.

axz
x :A, y :A⇒B, z :B⇒C ⊢ B⇒C

axx
x :A, y :A⇒B, z :B⇒C ⊢ A

axy
x :A, y :A⇒B, z :B⇒C ⊢ A⇒B ⇒e

x :A, y :A⇒B, z :B⇒C ⊢ B ⇒e
x :A, y :A⇒B, z :B⇒C ⊢ C

⇒x
iy :A⇒B, z :B⇒C ⊢ A⇒C

⇒z
i

y :A⇒B ⊢ (B⇒C) ⇒ A⇒C
⇒y

i⊢ (A⇒B) ⇒ (B⇒C) ⇒ A⇒C

15 / 39

Natural Deduction for Minimal Logic

Some examples of derivations in ND (⇒ associates to the right).
1 Prove that A ⊢ A, and ⊢ A ⇒ A, and B ⊢ A ⇒ A, and ⊢ A ⇒ B ⇒ A.

axx

x :A ⊢ A
axx

x :A ⊢ A ⇒x
i⊢ A ⇒ A

axx

x :A, y :B ⊢ A
⇒x

i
y : B ⊢ A ⇒ A

axx
x :A, y :B ⊢ A

⇒y
ix :A ⊢ B ⇒ A ⇒x
i⊢ A ⇒ B ⇒ A

2 Give two (distinct) derivations of A ⊢ A ⇒ A and two ones of ⊢ A ⇒ A ⇒ A.

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A

axx

x :A, y :A ⊢ A
⇒x

i
y :A ⊢ A ⇒ A

⇒y
i⊢ A ⇒ A ⇒ A

axx

x :A, y :A ⊢ A
⇒y

ix :A ⊢ A ⇒ A ⇒x
i⊢ A ⇒ A ⇒ A

3 Prove ⊢(A⇒B) ⇒ (B⇒C) ⇒ A⇒C and ⊢(A⇒(B⇒C)) ⇒ (A⇒B) ⇒ A⇒C.
axx

Γ ⊢ A⇒B⇒C
axz

Γ ⊢ A ⇒e
A,A ⇒ B,A ⇒ B ⇒ C ⊢ B ⇒ C

axy
Γ ⊢ A⇒B

axz
Γ ⊢ A ⇒e

A,A ⇒ B,A ⇒ B ⇒ C ⊢ B
⇒e

A,A ⇒ B,A ⇒ (B ⇒ C) ⊢ C
⇒z

i
A ⇒ B,A ⇒ (B ⇒ C) ⊢ A ⇒ C

⇒y
iA ⇒ (B ⇒ C) ⊢ (A ⇒ B) ⇒ (A ⇒ C)
⇒x

i⊢ (A ⇒ (B ⇒ C)) ⇒ (A ⇒ B) ⇒ (A ⇒ C)

where Γ = z : A, y : A⇒B, x : A⇒B⇒C.
15 / 39

Natural Deduction for Minimal Logic

An example of cut-elimination step in ND, where Γ = z : A, y : A⇒B, x : A⇒B⇒A.

axx
Γ ⊢ A⇒B⇒A

axz
Γ ⊢ A ⇒e

Γ ⊢ B ⇒ A

axy
Γ ⊢ A⇒B

axz
Γ ⊢ A ⇒e

Γ ⊢ B ⇒e
Γ ⊢ A ⇒z

i
x : A ⇒ B, y : A ⇒ (B ⇒ A) ⊢ A ⇒ A

⇒y
ix : A ⇒ (B ⇒ A) ⊢ (A ⇒ B) ⇒ (A ⇒ A)

⇒x
i⊢ (A ⇒ (B ⇒ A)) ⇒ (A ⇒ B) ⇒ (A ⇒ A)

axa
a :A, b :B ⊢ A

⇒b
ia :A ⊢ B ⇒ A ⇒a
i⊢ A⇒B⇒A

⇒e
⊢ (A ⇒ B) ⇒ A ⇒ A

↓cut
axa

∆, a :A, b :B ⊢ A
⇒b

i∆, a :A ⊢ B ⇒ A
⇒a

i∆ ⊢ A⇒B⇒A
axz

∆ ⊢ A ⇒e
∆ ⊢ B ⇒ A

axy
∆ ⊢ A⇒B

axz
∆ ⊢ A ⇒e

∆ ⊢ B ⇒e
∆ ⊢ A ⇒z

iy : A ⇒ B ⊢ A ⇒ A
⇒y

i⊢ (A ⇒ B) ⇒ (A ⇒ A)

where ∆ = z : A, y : A⇒B.

16 / 39

Natural Deduction for Minimal Logic

An example of cut-elimination step in ND, where Γ = z : A, y : A⇒B, x : A⇒B⇒A.

axx
Γ ⊢ A⇒B⇒A

axz
Γ ⊢ A ⇒e

Γ ⊢ B ⇒ A

axy
Γ ⊢ A⇒B

axz
Γ ⊢ A ⇒e

Γ ⊢ B ⇒e
Γ ⊢ A ⇒z

i
x : A ⇒ B, y : A ⇒ (B ⇒ A) ⊢ A ⇒ A

⇒y
ix : A ⇒ (B ⇒ A) ⊢ (A ⇒ B) ⇒ (A ⇒ A)

⇒x
i⊢ (A ⇒ (B ⇒ A)) ⇒ (A ⇒ B) ⇒ (A ⇒ A)

axa
a :A, b :B ⊢ A

⇒b
ia :A ⊢ B ⇒ A ⇒a
i⊢ A⇒B⇒A

⇒e
⊢ (A ⇒ B) ⇒ A ⇒ A

↓cut
axa

∆, a :A, b :B ⊢ A
⇒b

i∆, a :A ⊢ B ⇒ A
⇒a

i∆ ⊢ A⇒B⇒A
axz

∆ ⊢ A ⇒e
∆ ⊢ B ⇒ A

axy
∆ ⊢ A⇒B

axz
∆ ⊢ A ⇒e

∆ ⊢ B ⇒e
∆ ⊢ A ⇒z

iy : A ⇒ B ⊢ A ⇒ A
⇒y

i⊢ (A ⇒ B) ⇒ (A ⇒ A)

where ∆ = z : A, y : A⇒B.

16 / 39

The Curry-Howard Correspondence between ND and STLC

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

17 / 39

The Curry-Howard Correspondence between ND and STLC

The inference rules for the simply typed λ-calculus are the ones of ND plus decoration.
; We can decorate each sequent in a derivation of ND with a well-typed term.

; Each derivation D in ND corresponds to a unique well-typed λ-term (D)λ defined by
(axx

Γ, x :A ⊢ A
)
λ

= x

(.
.
. D

Γ, x :A ⊢ B
⇒x

iΓ ⊢ A ⇒ B

)
λ

= λx.(D)λ

(.
.
.D

Γ ⊢ A⇒B

.

.

.D′

Γ ⊢ A ⇒e
Γ ⊢ B

)
λ

= (D)λ(D′)λ

Rmk. The variable labeling the rules ax and ⇒i is crucial to uniquely determine (D)λ.

Rmk. If D derives Γ ⊢ A in ND, then Γ ⊢ (D)λ : A is derivable in STLC.

Proposition (Uniqueness of type and derivation for well-typed terms)

In STLC, if D derives Γ ⊢ t : A and D′ derives Γ ⊢ t : A′, then A = A′ and D = D′.

Proof. By structural induction on t (exercise!).

Theorem (Bijection between ND and Church-style STLC)

For every environment Γ and type A, the map (·)λ defines a bijection from derivations
of Γ ⊢ A in ND and well-typed λ-terms of type A and environment Γ in STLC.

Proof. Use Proposition and the second Remark above.

18 / 39

The Curry-Howard Correspondence between ND and STLC

The inference rules for the simply typed λ-calculus are the ones of ND plus decoration.
; We can decorate each sequent in a derivation of ND with a well-typed term.
; Each derivation D in ND corresponds to a unique well-typed λ-term (D)λ defined by
(axx

Γ, x :A ⊢ A
)
λ

= x

(.
.
. D

Γ, x :A ⊢ B
⇒x

iΓ ⊢ A ⇒ B

)
λ

= λx.(D)λ

(.
.
.D

Γ ⊢ A⇒B

.

.

.D′

Γ ⊢ A ⇒e
Γ ⊢ B

)
λ

= (D)λ(D′)λ

Rmk. The variable labeling the rules ax and ⇒i is crucial to uniquely determine (D)λ.

Rmk. If D derives Γ ⊢ A in ND, then Γ ⊢ (D)λ : A is derivable in STLC.

Proposition (Uniqueness of type and derivation for well-typed terms)

In STLC, if D derives Γ ⊢ t : A and D′ derives Γ ⊢ t : A′, then A = A′ and D = D′.

Proof. By structural induction on t (exercise!).

Theorem (Bijection between ND and Church-style STLC)

For every environment Γ and type A, the map (·)λ defines a bijection from derivations
of Γ ⊢ A in ND and well-typed λ-terms of type A and environment Γ in STLC.

Proof. Use Proposition and the second Remark above.

18 / 39

The Curry-Howard Correspondence between ND and STLC

The inference rules for the simply typed λ-calculus are the ones of ND plus decoration.
; We can decorate each sequent in a derivation of ND with a well-typed term.
; Each derivation D in ND corresponds to a unique well-typed λ-term (D)λ defined by
(axx

Γ, x :A ⊢ A
)
λ

= x

(.
.
. D

Γ, x :A ⊢ B
⇒x

iΓ ⊢ A ⇒ B

)
λ

= λx.(D)λ

(.
.
.D

Γ ⊢ A⇒B

.

.

.D′

Γ ⊢ A ⇒e
Γ ⊢ B

)
λ

= (D)λ(D′)λ

Rmk. The variable labeling the rules ax and ⇒i is crucial to uniquely determine (D)λ.

Rmk. If D derives Γ ⊢ A in ND, then Γ ⊢ (D)λ : A is derivable in STLC.

Proposition (Uniqueness of type and derivation for well-typed terms)

In STLC, if D derives Γ ⊢ t : A and D′ derives Γ ⊢ t : A′, then A = A′ and D = D′.

Proof. By structural induction on t (exercise!).

Theorem (Bijection between ND and Church-style STLC)

For every environment Γ and type A, the map (·)λ defines a bijection from derivations
of Γ ⊢ A in ND and well-typed λ-terms of type A and environment Γ in STLC.

Proof. Use Proposition and the second Remark above.

18 / 39

The Curry-Howard Correspondence between ND and STLC

The inference rules for the simply typed λ-calculus are the ones of ND plus decoration.
; We can decorate each sequent in a derivation of ND with a well-typed term.
; Each derivation D in ND corresponds to a unique well-typed λ-term (D)λ defined by
(axx

Γ, x :A ⊢ A
)
λ

= x

(.
.
. D

Γ, x :A ⊢ B
⇒x

iΓ ⊢ A ⇒ B

)
λ

= λx.(D)λ

(.
.
.D

Γ ⊢ A⇒B

.

.

.D′

Γ ⊢ A ⇒e
Γ ⊢ B

)
λ

= (D)λ(D′)λ

Rmk. The variable labeling the rules ax and ⇒i is crucial to uniquely determine (D)λ.

Rmk. If D derives Γ ⊢ A in ND, then Γ ⊢ (D)λ : A is derivable in STLC.

Proposition (Uniqueness of type and derivation for well-typed terms)

In STLC, if D derives Γ ⊢ t : A and D′ derives Γ ⊢ t : A′, then A = A′ and D = D′.

Proof. By structural induction on t (exercise!).

Theorem (Bijection between ND and Church-style STLC)

For every environment Γ and type A, the map (·)λ defines a bijection from derivations
of Γ ⊢ A in ND and well-typed λ-terms of type A and environment Γ in STLC.

Proof. Use Proposition and the second Remark above.
18 / 39

The Curry-Howard Correspondence between ND and STLC

We proved ()·λ is a bijection between well-typed terms in STLC and derivations in ND.
; Well-typed λ-terms in STLC are proof-terms, that is, concise (and linear)
representations of derivations (trees) in ND (a static correspondence).

The bijection lifts to a dynamic correspondence! ; As β-reduction and
cut-elimination mimic each other, it is an isomorphism between STLC and ND.

Theorem (Curry-Howard correspondence)
1 Let D.D′ be derivations of Γ ⊢ A in ND. If D →cut D′ then (D)λ →β (D′)λ.
2 Let Γ ⊢ t :A and Γ ⊢ t′ :A be derivable in STLC. If t →β t′ then (t)−1

λ →cut (t
′)−1

λ .

ND D D′ (t)−1
λ (t′)−1

λ

(1) (2)

STLC (D)λ (D′)λ t t′

cut

decoration decoration

β

cut

forget

β

forget

19 / 39

The Curry-Howard Correspondence between ND and STLC

We proved ()·λ is a bijection between well-typed terms in STLC and derivations in ND.
; Well-typed λ-terms in STLC are proof-terms, that is, concise (and linear)
representations of derivations (trees) in ND (a static correspondence).

The bijection lifts to a dynamic correspondence! ; As β-reduction and
cut-elimination mimic each other, it is an isomorphism between STLC and ND.

Theorem (Curry-Howard correspondence)
1 Let D.D′ be derivations of Γ ⊢ A in ND. If D →cut D′ then (D)λ →β (D′)λ.
2 Let Γ ⊢ t :A and Γ ⊢ t′ :A be derivable in STLC. If t →β t′ then (t)−1

λ →cut (t
′)−1

λ .

ND D D′ (t)−1
λ (t′)−1

λ

(1) (2)

STLC (D)λ (D′)λ t t′

cut

decoration decoration

β

cut

forget

β

forget

19 / 39

The Curry-Howard Correspondence between ND and STLC

We proved ()·λ is a bijection between well-typed terms in STLC and derivations in ND.
; Well-typed λ-terms in STLC are proof-terms, that is, concise (and linear)
representations of derivations (trees) in ND (a static correspondence).

The bijection lifts to a dynamic correspondence! ; As β-reduction and
cut-elimination mimic each other, it is an isomorphism between STLC and ND.

Theorem (Curry-Howard correspondence)
1 Let D.D′ be derivations of Γ ⊢ A in ND. If D →cut D′ then (D)λ →β (D′)λ.
2 Let Γ ⊢ t :A and Γ ⊢ t′ :A be derivable in STLC. If t →β t′ then (t)−1

λ →cut (t
′)−1

λ .

ND D D′ (t)−1
λ (t′)−1

λ

(1) (2)

STLC (D)λ (D′)λ t t′

cut

decoration decoration

β

cut

forget

β

forget

19 / 39

The Curry-Howard Correspondence between ND and STLC

An example of cut-elimination step in ND, where Γ = z : A, y : A⇒B, x : A⇒B⇒A.

D =

axx
Γ ⊢ A⇒B⇒A

axz
Γ ⊢ A ⇒e

Γ ⊢ B ⇒ A

axy
Γ ⊢ A⇒B

axz
Γ ⊢ A ⇒e

Γ ⊢ B ⇒e
Γ ⊢ A ⇒z

i
x : A ⇒ B, y : A ⇒ (B ⇒ A) ⊢ A ⇒ A

⇒y
ix : A ⇒ (B ⇒ A) ⊢ (A ⇒ B) ⇒ (A ⇒ A)

⇒x
i⊢ (A ⇒ (B ⇒ A)) ⇒ (A ⇒ B) ⇒ (A ⇒ A)

axa
a :A, b :B ⊢ A

⇒b
ia :A ⊢ B ⇒ A ⇒a
i⊢ A⇒B⇒A

⇒e
⊢ (A ⇒ B) ⇒ A ⇒ A

↓cut

D′ =

axa
∆, a :A, b :B ⊢ A

⇒b
i∆, a :A ⊢ B ⇒ A

⇒a
i∆ ⊢ A⇒B⇒A

axz
∆ ⊢ A ⇒e

∆ ⊢ B ⇒ A

axy
∆ ⊢ A⇒B

axz
∆ ⊢ A ⇒e

∆ ⊢ B ⇒e
∆ ⊢ A ⇒z

iy : A ⇒ B ⊢ A ⇒ A
⇒y

i⊢ (A ⇒ B) ⇒ (A ⇒ A)

where ∆ = z : A, y : A⇒B.
Observe that (D)λ = (λx.λy.λz.xz(yz))λa.λb.λa.a →β λy.λz.(λa.λb.a)z(yz) = (D′)λ.

20 / 39

The Curry-Howard Correspondence between ND and STLC

Two examples of derivation in STLC, where Γ = z : A, y : A⇒B, x : A⇒B⇒A.

axx
Γ ⊢ x : A⇒B⇒A

axz
Γ ⊢ z : A ⇒e

Γ ⊢ xz : B ⇒ A

axy
Γ ⊢ y : A⇒B

axz
Γ ⊢ z : A

⇒e
Γ ⊢ yz : B

⇒e
Γ ⊢ xz(yz) : A

⇒z
i

x : A⇒B, y : A⇒B⇒A ⊢ λz.xz(yz) : A⇒A
⇒y

ix : A⇒B⇒A ⊢ λy.λz.xz(yz) : (A⇒B) ⇒ (A⇒A)
⇒x

i⊢ λx.λy.λz.xz(yz) : (A⇒B⇒A) ⇒ (A⇒B) ⇒ (A⇒A)

axa
a :A, b :B ⊢ a : A

⇒b
ia :A ⊢ λb.a : B ⇒ A ⇒a

i⊢ λa.λb.λa.a : A⇒B⇒A
⇒e

⊢ (λx.λy.λz.xz(yz))λa.λb.λa.a : (A ⇒ B) ⇒ A ⇒ A

(Types on the abstracted variables are omitted for the sake of readability.)

axa
∆, a :A, b :a : B ⊢ A

⇒b
i∆, a :A ⊢ λb.a : B ⇒ A

⇒a
i∆ ⊢ λa.λb.a : A⇒B⇒A

axz
∆ ⊢ z : A ⇒e

∆ ⊢ (λa.λb.a)z : B ⇒ A

axy
∆ ⊢ y : A⇒B

axz
∆ ⊢ z : A

⇒e
∆ ⊢ yz : B

⇒e
∆ ⊢ (λa.λb.a)z(yz) : A

⇒z
i

y : A ⇒ B ⊢ λz.(λa.λb.a)z(yz) : A ⇒ A
⇒y

i⊢ λy.λz.(λa.λb.a)z(yz) : (A ⇒ B) ⇒ (A ⇒ A)

where ∆ = z : A, y : A⇒B.
Observe that (D)λ = (λx.λy.λz.xz(yz))λa.λb.λa.a →β λy.λz.(λa.λb.a)z(yz) = (D′)λ.

20 / 39

The Curry-Howard Correspondence between ND and STLC

axx

Γ, x :A ⊢ A n∈N. . .
axx

Γ, x :A ⊢ A

D

Γ, x :A ⊢ B
⇒x

i
Γ ⊢ A⇒B

D′

Γ ⊢ A
⇒e

Γ ⊢ B

↓cut

D′

Γ ⊢ A n∈N. . .

D′

Γ ⊢ A

D{D′/x}

Γ ⊢ B
21 / 39

The Curry-Howard Correspondence between ND and STLC

var
Γ, x :A ⊢ x :A n∈N. . .

var
Γ, x :A ⊢ x :A

D

Γ, x :A ⊢ s :B
λ

Γ ⊢ λxA.s :A⇒B

D′

Γ ⊢ t :A
@

Γ ⊢ (λxA.s)t :B

↓β

D′

Γ ⊢ t :A n∈N. . .

D′

Γ ⊢ t :A

D{D′/x}

Γ ⊢ s{t/x} :B
21 / 39

The Curry-Howard Correspondence between ND and STLC

ND and STLC are strictly related!

minimal logic simply typed λ-calculus computer science
formula type specification

derivation term program
cut-elimination step β-reduction computation step

derivation without redexes normal form result
cut-elimination theorem normalization termination

provability inhabitation ∃ program meeting spec.

Concerning the correspondence between derivations and terms:

derivation in minimal logic term in simply typed λ-calculus
ax variable var
⇒i abstraction λ
⇒e application @

22 / 39

The Curry-Howard Correspondence between ND and STLC

ND and STLC are strictly related!

minimal logic simply typed λ-calculus computer science
formula type specification

derivation term program
cut-elimination step β-reduction computation step

derivation without redexes normal form result
cut-elimination theorem normalization termination

provability inhabitation ∃ program meeting spec.

Concerning the correspondence between derivations and terms:

derivation in minimal logic term in simply typed λ-calculus
ax variable var
⇒i abstraction λ
⇒e application @

22 / 39

Cartesian Closed Categories strike back!

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

23 / 39

Cartesian Closed Categories strike back!

The simply typed λ-calculus can be interpreted in any CCC (see Day 3 for its definition).
Simple types (that is, formulas of minimal logic) are interpreted by objects.
Well-typed terms in STLC (i.e., derivations in ND) are interpreted by morphisms.

Definition (Categorical semantics/interpretation of well-typed λ-terms)

Let C be a CCC. The interpretation JAK of a type A in C is an object defined by:

JXK = an arbitrary object of C JA ⇒ BK = JAK ⇒ JBK.

Let Γ ⊢ t : B be derivable in STLC with Γ = x1 :A1, . . . xn :An and x⃗ = (x1, . . . , xn).
The categorical semantics of Γ ⊢ t : B wrt x⃗ in C is a morphism
JΓ ⊢ t : BKx⃗ : JA1K × · · · × JAnK → JBK defined by:

JΓ ⊢ xi : AiKx⃗ = πi where i ∈ {1, . . . , n}
JΓ ⊢ st : BKx⃗ = evA,B ◦ ⟨JΓ ⊢ s : A ⇒ BKx⃗, JΓ ⊢ t : AKx⃗⟩

JΓ ⊢ λy.t : A⇒BKx⃗ = curry(JΓ, y :A ⊢ t : BKx⃗,y) we assume wlog y /∈ {x1, . . . , xn}.

Rmk: Formally, the definition of semantics is for derivations, not for their conclusion,
and by induction on derivations. By uniqueness of the derivation (Proposition on p. 18)
there is no ambiguity if we only write the conclusion of the derivation to interpret.

24 / 39

Cartesian Closed Categories strike back!

The simply typed λ-calculus can be interpreted in any CCC (see Day 3 for its definition).
Simple types (that is, formulas of minimal logic) are interpreted by objects.
Well-typed terms in STLC (i.e., derivations in ND) are interpreted by morphisms.

Definition (Categorical semantics/interpretation of well-typed λ-terms)

Let C be a CCC. The interpretation JAK of a type A in C is an object defined by:

JXK = an arbitrary object of C JA ⇒ BK = JAK ⇒ JBK.

Let Γ ⊢ t : B be derivable in STLC with Γ = x1 :A1, . . . xn :An and x⃗ = (x1, . . . , xn).
The categorical semantics of Γ ⊢ t : B wrt x⃗ in C is a morphism
JΓ ⊢ t : BKx⃗ : JA1K × · · · × JAnK → JBK defined by:

JΓ ⊢ xi : AiKx⃗ = πi where i ∈ {1, . . . , n}
JΓ ⊢ st : BKx⃗ = evA,B ◦ ⟨JΓ ⊢ s : A ⇒ BKx⃗, JΓ ⊢ t : AKx⃗⟩

JΓ ⊢ λy.t : A⇒BKx⃗ = curry(JΓ, y :A ⊢ t : BKx⃗,y) we assume wlog y /∈ {x1, . . . , xn}.

Rmk: Formally, the definition of semantics is for derivations, not for their conclusion,
and by induction on derivations. By uniqueness of the derivation (Proposition on p. 18)
there is no ambiguity if we only write the conclusion of the derivation to interpret.

24 / 39

Cartesian Closed Categories strike back!

The simply typed λ-calculus can be interpreted in any CCC (see Day 3 for its definition).
Simple types (that is, formulas of minimal logic) are interpreted by objects.
Well-typed terms in STLC (i.e., derivations in ND) are interpreted by morphisms.

Definition (Categorical semantics/interpretation of well-typed λ-terms)

Let C be a CCC. The interpretation JAK of a type A in C is an object defined by:

JXK = an arbitrary object of C JA ⇒ BK = JAK ⇒ JBK.

Let Γ ⊢ t : B be derivable in STLC with Γ = x1 :A1, . . . xn :An and x⃗ = (x1, . . . , xn).
The categorical semantics of Γ ⊢ t : B wrt x⃗ in C is a morphism
JΓ ⊢ t : BKx⃗ : JA1K × · · · × JAnK → JBK defined by:

JΓ ⊢ xi : AiKx⃗ = πi where i ∈ {1, . . . , n}
JΓ ⊢ st : BKx⃗ = evA,B ◦ ⟨JΓ ⊢ s : A ⇒ BKx⃗, JΓ ⊢ t : AKx⃗⟩

JΓ ⊢ λy.t : A⇒BKx⃗ = curry(JΓ, y :A ⊢ t : BKx⃗,y) we assume wlog y /∈ {x1, . . . , xn}.

Rmk: Formally, the definition of semantics is for derivations, not for their conclusion,
and by induction on derivations. By uniqueness of the derivation (Proposition on p. 18)
there is no ambiguity if we only write the conclusion of the derivation to interpret.

24 / 39

Cartesian Closed Categories strike back!

Lemma (Substitution)

Let Γ, x :A ⊢ s :B and Γ ⊢ t :A be derivable in STLC with y⃗ = dom(Γ). Then,
JΓ ⊢ s{t/x} : BKy⃗ = JΓ, x :A ⊢ s :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ s :A Ky⃗⟩.

Proof. By induction on s. Exercise!

Theorem (Invariance/Soundness)

Let Γ ⊢ t :B and Γ ⊢ t′ :B be derivable in STLC with y⃗ = dom(Γ). If t →β t′ then
JΓ ⊢ t :BKy⃗ = JΓ ⊢ t′ :BKy⃗.

Proof. The key case is t = (λxA.t1)t2 →β t1{t2/x} = t′. We assume wlog x /∈ y⃗.

JΓ ⊢ t :BKy⃗ = JΓ ⊢ (λxA.t1)t2 :BKy⃗

= evA,B ◦ ⟨JΓ ⊢ λxA.t1 :A⇒BKy⃗, JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= evA,B ◦ ⟨curry(JΓ, x :A ⊢ t1 :BKy⃗,x), JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= JΓ, x :A ⊢ t1 :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ t2 :AKy⃗⟩ (rule βe)
= JΓ ⊢ t1{t2/x} :BKy⃗ = JΓ ⊢ t′ :BKy⃗ (substitution)

The other cases follow from the IH (proof by induction on the defin. of t →β t′).

Even contextuality holds. Consistency depends on the specific CCC.

25 / 39

Cartesian Closed Categories strike back!

Lemma (Substitution)

Let Γ, x :A ⊢ s :B and Γ ⊢ t :A be derivable in STLC with y⃗ = dom(Γ). Then,
JΓ ⊢ s{t/x} : BKy⃗ = JΓ, x :A ⊢ s :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ s :A Ky⃗⟩.

Proof. By induction on s. Exercise!

Theorem (Invariance/Soundness)

Let Γ ⊢ t :B and Γ ⊢ t′ :B be derivable in STLC with y⃗ = dom(Γ). If t →β t′ then
JΓ ⊢ t :BKy⃗ = JΓ ⊢ t′ :BKy⃗.

Proof. The key case is t = (λxA.t1)t2 →β t1{t2/x} = t′. We assume wlog x /∈ y⃗.

JΓ ⊢ t :BKy⃗ = JΓ ⊢ (λxA.t1)t2 :BKy⃗

= evA,B ◦ ⟨JΓ ⊢ λxA.t1 :A⇒BKy⃗, JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= evA,B ◦ ⟨curry(JΓ, x :A ⊢ t1 :BKy⃗,x), JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= JΓ, x :A ⊢ t1 :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ t2 :AKy⃗⟩ (rule βe)
= JΓ ⊢ t1{t2/x} :BKy⃗ = JΓ ⊢ t′ :BKy⃗ (substitution)

The other cases follow from the IH (proof by induction on the defin. of t →β t′).

Even contextuality holds. Consistency depends on the specific CCC.

25 / 39

Cartesian Closed Categories strike back!

Lemma (Substitution)

Let Γ, x :A ⊢ s :B and Γ ⊢ t :A be derivable in STLC with y⃗ = dom(Γ). Then,
JΓ ⊢ s{t/x} : BKy⃗ = JΓ, x :A ⊢ s :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ s :A Ky⃗⟩.

Proof. By induction on s. Exercise!

Theorem (Invariance/Soundness)

Let Γ ⊢ t :B and Γ ⊢ t′ :B be derivable in STLC with y⃗ = dom(Γ). If t →β t′ then
JΓ ⊢ t :BKy⃗ = JΓ ⊢ t′ :BKy⃗.

Proof. The key case is t = (λxA.t1)t2 →β t1{t2/x} = t′. We assume wlog x /∈ y⃗.

JΓ ⊢ t :BKy⃗ = JΓ ⊢ (λxA.t1)t2 :BKy⃗

= evA,B ◦ ⟨JΓ ⊢ λxA.t1 :A⇒BKy⃗, JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= evA,B ◦ ⟨curry(JΓ, x :A ⊢ t1 :BKy⃗,x), JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= JΓ, x :A ⊢ t1 :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ t2 :AKy⃗⟩ (rule βe)
= JΓ ⊢ t1{t2/x} :BKy⃗ = JΓ ⊢ t′ :BKy⃗ (substitution)

The other cases follow from the IH (proof by induction on the defin. of t →β t′).

Even contextuality holds. Consistency depends on the specific CCC.

25 / 39

Cartesian Closed Categories strike back!

Lemma (Substitution)

Let Γ, x :A ⊢ s :B and Γ ⊢ t :A be derivable in STLC with y⃗ = dom(Γ). Then,
JΓ ⊢ s{t/x} : BKy⃗ = JΓ, x :A ⊢ s :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ s :A Ky⃗⟩.

Proof. By induction on s. Exercise!

Theorem (Invariance/Soundness)

Let Γ ⊢ t :B and Γ ⊢ t′ :B be derivable in STLC with y⃗ = dom(Γ). If t →β t′ then
JΓ ⊢ t :BKy⃗ = JΓ ⊢ t′ :BKy⃗.

Proof. The key case is t = (λxA.t1)t2 →β t1{t2/x} = t′. We assume wlog x /∈ y⃗.

JΓ ⊢ t :BKy⃗ = JΓ ⊢ (λxA.t1)t2 :BKy⃗

= evA,B ◦ ⟨JΓ ⊢ λxA.t1 :A⇒BKy⃗, JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= evA,B ◦ ⟨curry(JΓ, x :A ⊢ t1 :BKy⃗,x), JΓ ⊢ t2 :AKy⃗⟩ (def. of J·K)
= JΓ, x :A ⊢ t1 :BKy⃗,x ◦ ⟨idJΓK, JΓ ⊢ t2 :AKy⃗⟩ (rule βe)
= JΓ ⊢ t1{t2/x} :BKy⃗ = JΓ ⊢ t′ :BKy⃗ (substitution)

The other cases follow from the IH (proof by induction on the defin. of t →β t′).

Even contextuality holds. Consistency depends on the specific CCC.
25 / 39

Cartesian Closed Categories strike back!

It can be proved that the STLC is the internal language of a CCC ; a deep link.

The Curry-Howard

-Lambek

correspondence: a link between logic, programming

, maths

26 / 39

Cartesian Closed Categories strike back!

It can be proved that the STLC is the internal language of a CCC ; a deep link.

The Curry-Howard

-Lambek

correspondence: a link between logic, programming.

,
maths

Minimal Logic
formula
proof

cut-elimination

Simply Typed λ-Calculus
type (specification)

program (well-typed term)
β-reduction (computation step)

26 / 39

Cartesian Closed Categories strike back!

It can be proved that the STLC is the internal language of a CCC ; a deep link.

The Curry-Howard-Lambek correspondence: a link between logic, programming, maths

Minimal Logic
formula
proof

cut-elimination

Simply Typed λ-Calculus
type (specification)

program (well-typed term)
β-reduction (computation step)

Cartesian Closed Category
object

morphism
equality

26 / 39

Strong Normalization for the Simply Typed λ-Calculus

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

27 / 39

Strong Normalization for the Simply Typed λ-Calculus

Given a reduction → on a set A, we aim to prove that → is strongly normalizing (SN):
; there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For any t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S,<)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
; After a single β-step the size (≈ number of characters) of a term may not decrease.(
λfX⇒X.f(f(fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

; The measure should be defined independently of/cannot rely on the size of terms.

Question: How to prove SN for STLC using a non-combinatorial approach?
Answer: Use the reducibility candidates method.

28 / 39

Strong Normalization for the Simply Typed λ-Calculus

Given a reduction → on a set A, we aim to prove that → is strongly normalizing (SN):
; there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For any t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S,<)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
; After a single β-step the size (≈ number of characters) of a term may not decrease.(
λfX⇒X.f(f(fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

; The measure should be defined independently of/cannot rely on the size of terms.

Question: How to prove SN for STLC using a non-combinatorial approach?
Answer: Use the reducibility candidates method.

28 / 39

Strong Normalization for the Simply Typed λ-Calculus

Given a reduction → on a set A, we aim to prove that → is strongly normalizing (SN):
; there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For any t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S,<)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
; After a single β-step the size (≈ number of characters) of a term may not decrease.(
λfX⇒X.f(f(fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

; The measure should be defined independently of/cannot rely on the size of terms.

Question: How to prove SN for STLC using a non-combinatorial approach?
Answer: Use the reducibility candidates method.

28 / 39

Strong Normalization for the Simply Typed λ-Calculus

Given a reduction → on a set A, we aim to prove that → is strongly normalizing (SN):
; there is no (infinite) sequence (ti)i∈N such that ti → ti+1 for all i ∈ N.

Idea (combinatorial): For any t ∈ A, we define a measure |t| ∈ S for some well-founded
set (S,<)—for instance (N, <)—such that: for every s ∈ A, if t → s then |t| > |s|.

Problem: It is doable for the simply typed λ-calculus, but it is very tricky.
; After a single β-step the size (≈ number of characters) of a term may not decrease.(
λfX⇒X.f(f(fx))

)(
z(z(z(zf)))

)
→β

(
z(z(z(zf)))

)((
z(z(z(zf)))

)((
z(z(z(zf)))

)
x
))

; The measure should be defined independently of/cannot rely on the size of terms.

Question: How to prove SN for STLC using a non-combinatorial approach?
Answer: Use the reducibility candidates method.

28 / 39

Strong Normalization for the Simply Typed λ-Calculus

Idea: Define a set RedA of terms (reducibility candidates) by induction on the type A:
for any ground type X, RedX is the set of SN terms of type X;
RedA⇒B is the set of the terms s : A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u.
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t∈RedB , so u∈RedA.
2 If u = x :X, then u is SN, so u∈RedX . If u = x :B⇒C, to prove that x∈RedB⇒C

we must show that xt ∈ RedC for all t∈RedB ; A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C, to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ; How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and
that if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
; The application of λxB.s to t may not be possible.

29 / 39

Strong Normalization for the Simply Typed λ-Calculus

Idea: Define a set RedA of terms (reducibility candidates) by induction on the type A:
for any ground type X, RedX is the set of SN terms of type X;
RedA⇒B is the set of the terms s : A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u.
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t∈RedB , so u∈RedA.
2 If u = x :X, then u is SN, so u∈RedX . If u = x :B⇒C, to prove that x∈RedB⇒C

we must show that xt ∈ RedC for all t∈RedB ; A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C, to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ; How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and
that if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
; The application of λxB.s to t may not be possible.

29 / 39

Strong Normalization for the Simply Typed λ-Calculus

Idea: Define a set RedA of terms (reducibility candidates) by induction on the type A:
for any ground type X, RedX is the set of SN terms of type X;
RedA⇒B is the set of the terms s : A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u.
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t∈RedB , so u∈RedA.
2 If u = x :X, then u is SN, so u∈RedX . If u = x :B⇒C, to prove that x∈RedB⇒C

we must show that xt ∈ RedC for all t∈RedB ; A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C, to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ; How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and
that if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
; The application of λxB.s to t may not be possible.

29 / 39

Strong Normalization for the Simply Typed λ-Calculus

Idea: Define a set RedA of terms (reducibility candidates) by induction on the type A:
for any ground type X, RedX is the set of SN terms of type X;
RedA⇒B is the set of the terms s : A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u.
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t∈RedB , so u∈RedA.
2 If u = x :X, then u is SN, so u∈RedX . If u = x :B⇒C, to prove that x∈RedB⇒C

we must show that xt ∈ RedC for all t∈RedB ; A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C, to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ; How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and
that if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
; The application of λxB.s to t may not be possible.

29 / 39

Strong Normalization for the Simply Typed λ-Calculus

Idea: Define a set RedA of terms (reducibility candidates) by induction on the type A:
for any ground type X, RedX is the set of SN terms of type X;
RedA⇒B is the set of the terms s : A⇒B such that st∈RedB for all t∈RedA.

Rmk: For every type A, every term in RedA is SN (easy proof by induction on A).

Goal: For any type A, if u :A then u∈RedA (so u is SN). Proof by induction on u.
1 If u = st :A then s :B⇒A and t :B; by IH, s ∈ RedB⇒A and t∈RedB , so u∈RedA.
2 If u = x :X, then u is SN, so u∈RedX . If u = x :B⇒C, to prove that x∈RedB⇒C

we must show that xt ∈ RedC for all t∈RedB ; A stronger hypothesis is needed.
3 If u = λxB.s : B⇒C, to prove that u ∈ RedB⇒C we have to show that

(λxB.s)t ∈ RedC for all t ∈ RedB . ; How to prove that?

Idea: Suppose λxB.s : B ⇒ C and t ∈ RedB . Let us prove that s{t/x} ∈ RedC and
that if s{t/x} ∈ RedC then (λxB.s)t ∈ RedC . This way, Point 3 above is done.

Problem. The environments for λxB.s and t may be differ in some free variable.
; The application of λxB.s to t may not be possible.

29 / 39

Strong Normalization for the Simply Typed λ-Calculus

Solution: Take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A ⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B is derivable and t1, . . . , tn are SN, then ⟨Γ;xt1 . . . tn⟩ ∈ RedB .
3 (Closure under β-expansion) If ⟨Γ; s{t/x}t1 . . . tn⟩∈RedB , Γ ⊢ t :A is derivable

and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X
then Point 1 is by definition of RedX , Points 2–3 are a good exercise! Let B = C⇒D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C. As ⟨Γ; t⟩ ∈ RedC⇒D, then ⟨Γ, z :C; tz⟩ ∈ RedD and hence tz is SN
by the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C;
as Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆;xt1 . . . tnt⟩∈RedD by induction
hypothesis of Point 2 applied to D; so ⟨Γ;xt1 . . . tn⟩∈RedB by defin. of RedC⇒D.

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩∈RedD and hence, by induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩∈RedD; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

30 / 39

Strong Normalization for the Simply Typed λ-Calculus

Solution: Take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A ⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B is derivable and t1, . . . , tn are SN, then ⟨Γ;xt1 . . . tn⟩ ∈ RedB .
3 (Closure under β-expansion) If ⟨Γ; s{t/x}t1 . . . tn⟩∈RedB , Γ ⊢ t :A is derivable

and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X
then Point 1 is by definition of RedX , Points 2–3 are a good exercise! Let B = C⇒D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C. As ⟨Γ; t⟩ ∈ RedC⇒D, then ⟨Γ, z :C; tz⟩ ∈ RedD and hence tz is SN
by the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C;
as Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆;xt1 . . . tnt⟩∈RedD by induction
hypothesis of Point 2 applied to D; so ⟨Γ;xt1 . . . tn⟩∈RedB by defin. of RedC⇒D.

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩∈RedD and hence, by induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩∈RedD; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

30 / 39

Strong Normalization for the Simply Typed λ-Calculus

Solution: Take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A ⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B is derivable and t1, . . . , tn are SN, then ⟨Γ;xt1 . . . tn⟩ ∈ RedB .
3 (Closure under β-expansion) If ⟨Γ; s{t/x}t1 . . . tn⟩∈RedB , Γ ⊢ t :A is derivable

and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X
then Point 1 is by definition of RedX , Points 2–3 are a good exercise! Let B = C⇒D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C. As ⟨Γ; t⟩ ∈ RedC⇒D, then ⟨Γ, z :C; tz⟩ ∈ RedD and hence tz is SN
by the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C;
as Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆;xt1 . . . tnt⟩∈RedD by induction
hypothesis of Point 2 applied to D; so ⟨Γ;xt1 . . . tn⟩∈RedB by defin. of RedC⇒D.

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩∈RedD and hence, by induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩∈RedD; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

30 / 39

Strong Normalization for the Simply Typed λ-Calculus

Solution: Take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A ⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B is derivable and t1, . . . , tn are SN, then ⟨Γ;xt1 . . . tn⟩ ∈ RedB .
3 (Closure under β-expansion) If ⟨Γ; s{t/x}t1 . . . tn⟩∈RedB , Γ ⊢ t :A is derivable

and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X
then Point 1 is by definition of RedX , Points 2–3 are a good exercise! Let B = C⇒D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C. As ⟨Γ; t⟩ ∈ RedC⇒D, then ⟨Γ, z :C; tz⟩ ∈ RedD and hence tz is SN
by the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C;
as Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆;xt1 . . . tnt⟩∈RedD by induction
hypothesis of Point 2 applied to D; so ⟨Γ;xt1 . . . tn⟩∈RedB by defin. of RedC⇒D.

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩∈RedD and hence, by induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩∈RedD; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

30 / 39

Strong Normalization for the Simply Typed λ-Calculus

Solution: Take the environment into account when defining RedA, for all types A.

RedX = {⟨Γ; t⟩ | t is SN, Γ ⊢ t : X}
RedA⇒B = {⟨Γ; s⟩ | Γ ⊢ s : A ⇒ B, ⟨Γ,∆; st⟩ ∈ RedB for all ⟨Γ,∆; t⟩ ∈ RedA}

Lemma
1 If ⟨Γ; t⟩ ∈ RedB then t is SN.
2 If Γ ⊢ xt1 . . . tn : B is derivable and t1, . . . , tn are SN, then ⟨Γ;xt1 . . . tn⟩ ∈ RedB .
3 (Closure under β-expansion) If ⟨Γ; s{t/x}t1 . . . tn⟩∈RedB , Γ ⊢ t :A is derivable

and t is SN, then ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

Proof. Points 1–3 are proved simultaneously by induction on the type B. If B = X
then Point 1 is by definition of RedX , Points 2–3 are a good exercise! Let B = C⇒D.

1 Let z /∈ dom(Γ), so ⟨Γ, z :C; z⟩ ∈ RedC by the induction hypothesis of Point 2
applied to C. As ⟨Γ; t⟩ ∈ RedC⇒D, then ⟨Γ, z :C; tz⟩ ∈ RedD and hence tz is SN
by the induction hypothesis of Point 1 applied to D; thus t is SN too.

2 Let ⟨Γ,∆; t⟩ ∈ RedC , so t is SN by induction hypothesis of Point 1 applied to C;
as Γ,∆ ⊢ xt1 . . . tnt : D is derivable, ⟨Γ,∆;xt1 . . . tnt⟩∈RedD by induction
hypothesis of Point 2 applied to D; so ⟨Γ;xt1 . . . tn⟩∈RedB by defin. of RedC⇒D.

3 Let ⟨Γ,∆; r⟩ ∈ RedC , so ⟨Γ,∆; s{t/x}t1 . . . tnr⟩∈RedD and hence, by induction
hypothesis, ⟨Γ,∆; (λxA.s)tt1 . . . tnr⟩∈RedD; thus, ⟨Γ; (λxA.s)tt1 . . . tn⟩∈RedB .

30 / 39

Strong Normalization for the Simply Typed λ-Calculus

Rmk: In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1 :B1, . . . , xn :Bn ⊢ t : A and ⟨Γ; si⟩∈RedBi , then ⟨Γ; t{s1/x1, . . . , sn/xn}⟩∈RedA.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ-calculus)
Every well-typed term in the simply typed λ-calculus is SN.

Proof. Let x1 : B1, . . . , xn : Bn ⊢ t : A be derivable. Let Γ = x1 : B1, . . . , xn : Bn and
si = xi for all 1 ≤ i ≤ n, hence ⟨Γ; si⟩ ∈ RedBi by Point 2 of the lemma on p. 29 (as
Γ ⊢ xi :Bi is derivable), for all 1 ≤ i ≤ n. By the substitution lemma above, ⟨Γ; t⟩ =
⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA. By Point 1 of the lemma on p. 29, t is SN.

Moral: It does not matter the order in which β-redexes are fired in a well-typed term
of STLC, it will eventually lead to a normal form (the same result by confluence).

31 / 39

Strong Normalization for the Simply Typed λ-Calculus

Rmk: In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1 :B1, . . . , xn :Bn ⊢ t : A and ⟨Γ; si⟩∈RedBi , then ⟨Γ; t{s1/x1, . . . , sn/xn}⟩∈RedA.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ-calculus)
Every well-typed term in the simply typed λ-calculus is SN.

Proof. Let x1 : B1, . . . , xn : Bn ⊢ t : A be derivable. Let Γ = x1 : B1, . . . , xn : Bn and
si = xi for all 1 ≤ i ≤ n, hence ⟨Γ; si⟩ ∈ RedBi by Point 2 of the lemma on p. 29 (as
Γ ⊢ xi :Bi is derivable), for all 1 ≤ i ≤ n. By the substitution lemma above, ⟨Γ; t⟩ =
⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA. By Point 1 of the lemma on p. 29, t is SN.

Moral: It does not matter the order in which β-redexes are fired in a well-typed term
of STLC, it will eventually lead to a normal form (the same result by confluence).

31 / 39

Strong Normalization for the Simply Typed λ-Calculus

Rmk: In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1 :B1, . . . , xn :Bn ⊢ t : A and ⟨Γ; si⟩∈RedBi , then ⟨Γ; t{s1/x1, . . . , sn/xn}⟩∈RedA.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ-calculus)
Every well-typed term in the simply typed λ-calculus is SN.

Proof. Let x1 : B1, . . . , xn : Bn ⊢ t : A be derivable. Let Γ = x1 : B1, . . . , xn : Bn and
si = xi for all 1 ≤ i ≤ n, hence ⟨Γ; si⟩ ∈ RedBi by Point 2 of the lemma on p. 29 (as
Γ ⊢ xi :Bi is derivable), for all 1 ≤ i ≤ n. By the substitution lemma above, ⟨Γ; t⟩ =
⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA. By Point 1 of the lemma on p. 29, t is SN.

Moral: It does not matter the order in which β-redexes are fired in a well-typed term
of STLC, it will eventually lead to a normal form (the same result by confluence).

31 / 39

Strong Normalization for the Simply Typed λ-Calculus

Rmk: In the previous lemma, Point 1 needs Point 2 in its proof, and vice versa.
Point 3 is independent of Points 1–2 and is used in the proof of the lemma below.

Lemma (Substitution)

If x1 :B1, . . . , xn :Bn ⊢ t : A and ⟨Γ; si⟩∈RedBi , then ⟨Γ; t{s1/x1, . . . , sn/xn}⟩∈RedA.

Proof. By structural induction on the term t, using Point 3 above (exercise!).

Theorem (Strong normalization of the simply typed λ-calculus)
Every well-typed term in the simply typed λ-calculus is SN.

Proof. Let x1 : B1, . . . , xn : Bn ⊢ t : A be derivable. Let Γ = x1 : B1, . . . , xn : Bn and
si = xi for all 1 ≤ i ≤ n, hence ⟨Γ; si⟩ ∈ RedBi by Point 2 of the lemma on p. 29 (as
Γ ⊢ xi :Bi is derivable), for all 1 ≤ i ≤ n. By the substitution lemma above, ⟨Γ; t⟩ =
⟨Γ; t{s1/x1, . . . , sn/xn}⟩ ∈ RedA. By Point 1 of the lemma on p. 29, t is SN.

Moral: It does not matter the order in which β-redexes are fired in a well-typed term
of STLC, it will eventually lead to a normal form (the same result by confluence).

31 / 39

Strong Normalization for the Simply Typed λ-Calculus

By Curry-Howard, normalization of STLC can be seen as a cut-elimination theorem in
ND ; Let us see some proof-theoretic consequences in ND.

Rmk: If D proves Γ ⊢ A in ND without detours (a detour is a formula occurrence being
conclusion of ⇒i and left premise of ⇒e), then D only contains subformulas of Γ or A.

Corollary (Subformula property)
If Γ ⊢ A is provable in ND, then there is a derivation D of Γ ⊢ A only containing
subformulas of Γ or A.

Proof. By cut-elimination, there is D with no detours. Rmk. above concludes.
Moral: When searching for a derivation of Γ ⊢ A, just look at the subformulas of Γ, A.

Corollary (Consistency of ND)

Some sequents (e.g. all ground types without hypotheses) are not provable in ND.

Proof. If ⊢ X were provable in ND, there would be a derivation D of ⊢ X with the
subformula property by Coroll. above, hence the last rule of D could neither be ⇒e nor
⇒i (as X is not an implication) nor ax (as there are no hypotheses).

32 / 39

Strong Normalization for the Simply Typed λ-Calculus

By Curry-Howard, normalization of STLC can be seen as a cut-elimination theorem in
ND ; Let us see some proof-theoretic consequences in ND.

Rmk: If D proves Γ ⊢ A in ND without detours (a detour is a formula occurrence being
conclusion of ⇒i and left premise of ⇒e), then D only contains subformulas of Γ or A.

Corollary (Subformula property)
If Γ ⊢ A is provable in ND, then there is a derivation D of Γ ⊢ A only containing
subformulas of Γ or A.

Proof. By cut-elimination, there is D with no detours. Rmk. above concludes.
Moral: When searching for a derivation of Γ ⊢ A, just look at the subformulas of Γ, A.

Corollary (Consistency of ND)

Some sequents (e.g. all ground types without hypotheses) are not provable in ND.

Proof. If ⊢ X were provable in ND, there would be a derivation D of ⊢ X with the
subformula property by Coroll. above, hence the last rule of D could neither be ⇒e nor
⇒i (as X is not an implication) nor ax (as there are no hypotheses).

32 / 39

Strong Normalization for the Simply Typed λ-Calculus

By Curry-Howard, normalization of STLC can be seen as a cut-elimination theorem in
ND ; Let us see some proof-theoretic consequences in ND.

Rmk: If D proves Γ ⊢ A in ND without detours (a detour is a formula occurrence being
conclusion of ⇒i and left premise of ⇒e), then D only contains subformulas of Γ or A.

Corollary (Subformula property)
If Γ ⊢ A is provable in ND, then there is a derivation D of Γ ⊢ A only containing
subformulas of Γ or A.

Proof. By cut-elimination, there is D with no detours. Rmk. above concludes.
Moral: When searching for a derivation of Γ ⊢ A, just look at the subformulas of Γ, A.

Corollary (Consistency of ND)

Some sequents (e.g. all ground types without hypotheses) are not provable in ND.

Proof. If ⊢ X were provable in ND, there would be a derivation D of ⊢ X with the
subformula property by Coroll. above, hence the last rule of D could neither be ⇒e nor
⇒i (as X is not an implication) nor ax (as there are no hypotheses).

32 / 39

Strong Normalization for the Simply Typed λ-Calculus

By Curry-Howard, normalization of STLC can be seen as a cut-elimination theorem in
ND ; Let us see some proof-theoretic consequences in ND.

Rmk: If D proves Γ ⊢ A in ND without detours (a detour is a formula occurrence being
conclusion of ⇒i and left premise of ⇒e), then D only contains subformulas of Γ or A.

Corollary (Subformula property)
If Γ ⊢ A is provable in ND, then there is a derivation D of Γ ⊢ A only containing
subformulas of Γ or A.

Proof. By cut-elimination, there is D with no detours. Rmk. above concludes.
Moral: When searching for a derivation of Γ ⊢ A, just look at the subformulas of Γ, A.

Corollary (Consistency of ND)

Some sequents (e.g. all ground types without hypotheses) are not provable in ND.

Proof. If ⊢ X were provable in ND, there would be a derivation D of ⊢ X with the
subformula property by Coroll. above, hence the last rule of D could neither be ⇒e nor
⇒i (as X is not an implication) nor ax (as there are no hypotheses).

32 / 39

Strong Normalization for the Simply Typed λ-Calculus

By Curry-Howard, normalization of STLC can be seen as a cut-elimination theorem in
ND ; Let us see some proof-theoretic consequences in ND.

Rmk: If D proves Γ ⊢ A in ND without detours (a detour is a formula occurrence being
conclusion of ⇒i and left premise of ⇒e), then D only contains subformulas of Γ or A.

Corollary (Subformula property)
If Γ ⊢ A is provable in ND, then there is a derivation D of Γ ⊢ A only containing
subformulas of Γ or A.

Proof. By cut-elimination, there is D with no detours. Rmk. above concludes.
Moral: When searching for a derivation of Γ ⊢ A, just look at the subformulas of Γ, A.

Corollary (Consistency of ND)

Some sequents (e.g. all ground types without hypotheses) are not provable in ND.

Proof. If ⊢ X were provable in ND, there would be a derivation D of ⊢ X with the
subformula property by Coroll. above, hence the last rule of D could neither be ⇒e nor
⇒i (as X is not an implication) nor ax (as there are no hypotheses).

32 / 39

Logic and/vs Computation

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

33 / 39

Logic and/vs Computation

The computational power of STLC is quite limited, far from Turing-completeness.

Theorem (Schwichtenberg)
The functions that are definable in STLC are exactly the extended polynomials, that is,
the smallest class of functions f : Nk → N for all k ∈ N containing the:

projections πk
i (n1, . . . , nk) = ni for all 1 ≤ i ≤ n;

constants k(n) = n and signum sg(0) = 0 and sg(n+ 1) = 1;
and closed under addition and multiplication.

A way to increase the computational power while keeping types is to enrich STLC with
ground types nat for natural numbers and bool for Booleans, with their constants
true : bool, false : bool and n : nat (for all n ∈ N) as axioms;
some function symbols for basic functions such as predecessor, if-then-else and so
on, with their appropriate types as axioms;
for every type A, a fixpoint combinator YA with the type (A⇒A)⇒A as an
axiom and the reduction rule YAt →β t(YAt).

; PCF, a Turing-complete prototype of functional programming languages, but its
logical meaning is gone: any type is inhabited (⊢ YAλx

A.x :A is derivable for any A).

34 / 39

Logic and/vs Computation

The computational power of STLC is quite limited, far from Turing-completeness.

Theorem (Schwichtenberg)
The functions that are definable in STLC are exactly the extended polynomials, that is,
the smallest class of functions f : Nk → N for all k ∈ N containing the:

projections πk
i (n1, . . . , nk) = ni for all 1 ≤ i ≤ n;

constants k(n) = n and signum sg(0) = 0 and sg(n+ 1) = 1;
and closed under addition and multiplication.

A way to increase the computational power while keeping types is to enrich STLC with
ground types nat for natural numbers and bool for Booleans, with their constants
true : bool, false : bool and n : nat (for all n ∈ N) as axioms;
some function symbols for basic functions such as predecessor, if-then-else and so
on, with their appropriate types as axioms;
for every type A, a fixpoint combinator YA with the type (A⇒A)⇒A as an
axiom and the reduction rule YAt →β t(YAt).

; PCF, a Turing-complete prototype of functional programming languages, but its
logical meaning is gone: any type is inhabited (⊢ YAλx

A.x :A is derivable for any A).
34 / 39

Logic and/vs Computation

The Curry–Howard correspondence is not only for minimal logic, it can be extended to:
full propositional intuitionistic logic, by adding conjunction (i.e. product types)
with pairs/projections, disjunction (i.e. sum types) with injections/cases, . . . ;
second order intuitionistic logic by adding a universal quantifier for polymorphism;
some variants of classical logic (see more in Day 5);
dependent type theory;
. . .

In such extensions, the computational power increases, keeping a logical meaning. E.g.

Theorem (Girard)

The functions that are definable in system F (second order intuitionistic logic) are the
ones that can be proved to be total by second-order Peano arithmetic.

But these extensions cannot be Turing-complete: by cut-elimination/normalization
they cannot represent partial functions.

There is an inherent trade-off between computational power and logical meaning.

35 / 39

Logic and/vs Computation

The Curry–Howard correspondence is not only for minimal logic, it can be extended to:
full propositional intuitionistic logic, by adding conjunction (i.e. product types)
with pairs/projections, disjunction (i.e. sum types) with injections/cases, . . . ;
second order intuitionistic logic by adding a universal quantifier for polymorphism;
some variants of classical logic (see more in Day 5);
dependent type theory;
. . .

In such extensions, the computational power increases, keeping a logical meaning. E.g.

Theorem (Girard)

The functions that are definable in system F (second order intuitionistic logic) are the
ones that can be proved to be total by second-order Peano arithmetic.

But these extensions cannot be Turing-complete: by cut-elimination/normalization
they cannot represent partial functions.

There is an inherent trade-off between computational power and logical meaning.

35 / 39

Logic and/vs Computation

The Curry–Howard correspondence is not only for minimal logic, it can be extended to:
full propositional intuitionistic logic, by adding conjunction (i.e. product types)
with pairs/projections, disjunction (i.e. sum types) with injections/cases, . . . ;
second order intuitionistic logic by adding a universal quantifier for polymorphism;
some variants of classical logic (see more in Day 5);
dependent type theory;
. . .

In such extensions, the computational power increases, keeping a logical meaning. E.g.

Theorem (Girard)

The functions that are definable in system F (second order intuitionistic logic) are the
ones that can be proved to be total by second-order Peano arithmetic.

But these extensions cannot be Turing-complete: by cut-elimination/normalization
they cannot represent partial functions.

There is an inherent trade-off between computational power and logical meaning.

35 / 39

Summary, Exercises, Bibliography

1 From the Untyped to the Simply Typed λ-Calculus

2 Natural Deduction for Minimal Logic

3 The Curry-Howard Correspondence between ND and STLC

4 Cartesian Closed Categories strike back!

5 Strong Normalization for the Simply Typed λ-Calculus

6 Logic and/vs Computation

7 Summary, Exercises, Bibliography

36 / 39

Summary, Exercises, Bibliography

The simply typed λ-calculus in Church-style.
The proof of strong normalization for the simply
typed λ-calculus via reducibility candidates.
Natural deduction for minimal logic.
The Curry–Howard–Lambek correspondence:

formula = type = object in a CCC;
proof = program = morphism in a CCC;
cut-elimination = β-reduction = equality.

Computational understanding of logic and logical
understanding of computation.

What have we
learned today?

Rmk: We presented the Curry–Howard correspondence as two distinct things, STLC as
a programming language and ND as a proof system, that turn out to be isomorphic.
But they can be seen as two different views of the same thing ; a single underlying
logical/computational system for reasoning about abstraction and hypotheticals:

A formula A⇒B says “If I had an A, I could prove B”.
A program : A⇒B says “If I had a value : A, I could compute a value : B”.

That the underlying system can be formalized as ND or STLC is just syntactic sugar.

37 / 39

Summary, Exercises, Bibliography

The simply typed λ-calculus in Church-style.
The proof of strong normalization for the simply
typed λ-calculus via reducibility candidates.
Natural deduction for minimal logic.
The Curry–Howard–Lambek correspondence:

formula = type = object in a CCC;
proof = program = morphism in a CCC;
cut-elimination = β-reduction = equality.

Computational understanding of logic and logical
understanding of computation.

What have we
learned today?

Rmk: We presented the Curry–Howard correspondence as two distinct things, STLC as
a programming language and ND as a proof system, that turn out to be isomorphic.
But they can be seen as two different views of the same thing ; a single underlying
logical/computational system for reasoning about abstraction and hypotheticals:

A formula A⇒B says “If I had an A, I could prove B”.
A program : A⇒B says “If I had a value : A, I could compute a value : B”.

That the underlying system can be formalized as ND or STLC is just syntactic sugar.

37 / 39

Summary, Exercises, Bibliography

The simply typed λ-calculus in Church-style.
The proof of strong normalization for the simply
typed λ-calculus via reducibility candidates.
Natural deduction for minimal logic.
The Curry–Howard–Lambek correspondence:

formula = type = object in a CCC;
proof = program = morphism in a CCC;
cut-elimination = β-reduction = equality.

Computational understanding of logic and logical
understanding of computation.

What have we
learned today?

Rmk: We presented the Curry–Howard correspondence as two distinct things, STLC as
a programming language and ND as a proof system, that turn out to be isomorphic.
But they can be seen as two different views of the same thing ; a single underlying
logical/computational system for reasoning about abstraction and hypotheticals:

A formula A⇒B says “If I had an A, I could prove B”.
A program : A⇒B says “If I had a value : A, I could compute a value : B”.

That the underlying system can be formalized as ND or STLC is just syntactic sugar.

37 / 39

Summary, Exercises, Bibliography

Do the proofs of the statements on the slides.

Look at our notes on the webpage of the course, there are plenty of details,
proofs and exercises. Today’s notes are under construction!

The exercises will have solutions (but try to do them by yourself before looking
at them!).

Don’t hesitate to ask us questions in person or on Discord about lectures,
exercises, solutions, further reading.

38 / 39

https://davidebarbarossa12.github.io/Enseignements/2024-25/esslli25_notes3.pdf
https://davidebarbarossa12.github.io/Enseignements/2024-25/ESSLLI.html

Summary, Exercises, Bibliography

Chapter 4 of:
Amadio R., Curien P-L.: Domains and lambda-calculi, 1996,
https://www.cambridge.org/core/books/domains-and-lambdacalculi/
4C6AB6938E436CFA8D5A8533B76A7F23

Chapters 2 to 4 of:
Sørensen M. H., Urzyczyin P.: Lectures on the Curry-Howard
Isomorphism, 2006,
https://www.sciencedirect.com/bookseries/
studies-in-logic-and-the-foundations-of-mathematics/vol/149/
(A draft is available on
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf)

Chapters 1 to 3 of:
Barendregt H. P.: Lambda Calculi with Types. In Handbook of Logic
in Computer Science, vol. 2, 1993,
https://www.cs.rhul.ac.uk/~zhaohui/Barendregt92.pdf

Chapters 1 to 3 and 6 of:
Girard J. Y., Lafont Y., Taylor P.: Proof and Types, 1989,
https://www.paultaylor.eu/stable/prot.pdf

39 / 39

https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/149/
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/149/
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf
https://www.cs.rhul.ac.uk/~zhaohui/Barendregt92.pdf
https://www.paultaylor.eu/stable/prot.pdf

	orangePreviously...
	
	orangeOutline
	orangeFrom the Untyped to the Simply Typed -Calculus
	orangeNatural Deduction for Minimal Logic
	orangeThe Curry-Howard Correspondence between ND and STLC
	orange Cartesian Closed Categories strike back!
	orangeStrong Normalization for the Simply Typed -Calculus
	orange Logic and/vs Computation
	orange Summary, Exercises, Bibliography

