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o We introduced the A-calculus, a basic functional
programming language inspired by the graph model.

What have we

o We gave it a denotational semantics in the graph learned yesterday’

model.
o We gave it a operational semantics. o

o Even if minimal, the operational semantics makes it
a Turing-complete programming language.

@ We programmed some basic functions on simple
datatypes.
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What is Denotational Semantics for Programming Languages?
o] le} =} (=)

© Category Theory in a Nutshell

@ Categorical Semantics for the (Untyped) A-Calculus

@ Summary, Exercises, Bibliography
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What is Denotational Semantics for Programming Languages?
o] le} =} (=)
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Denotational semantics describes the meaning of programs via mathematical objects.

Idea: The denotation of a program M describes what M does, regardless of how.
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Idea: The denotation of a program M describes what M does, regardless of how.

Some tenets of denotational semantics [M] of a program M:

@ Contextuality: If [M] = [M'] then [c(M)] = [c(M')] for every context C.
~» The denotation of a program is built from the denotations of its subprograms.

@ Invariance under evaluation: If M —4 M then [M] = [M'].
~» The denotation is invariant under evaluation, the interest is what, not how.

@ Consistency: There are programs M and M’ such that [M] # [M'].
~> The denotation of a program is informative, it does not collapse everything.
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In which kind of algebraic structures can A-terms be denoted/interpreted? A A-term
@ can serve as an argument ~ it should be denoted in an algebraic structure X;
@ can serve as a function to apply to an argument ~ it should be denoted in X = X.
As a A-term M can be applied to itself, it is natural to ask for “(X = X) C X”.
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o By Cantor’s theorem, X cannot be a set where X = X is its function space.

o Restricting X=X to the set of some specific maps, possibly “X=X C X” holds.
Ex. X is a cpo, X=-X is the set of Scott-continuous maps on X ordered pointwise.
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@ can serve as an argument ~ it should be denoted in an algebraic structure X;
@ can serve as a function to apply to an argument ~ it should be denoted in X = X.
As a A-term M can be applied to itself, it is natural to ask for “(X = X) C X”.

o By Cantor’s theorem, X cannot be a set where X = X is its function space.

o Restricting X=X to the set of some specific maps, possibly “X=X C X” holds.
Ex. X is a cpo, X=-X is the set of Scott-continuous maps on X ordered pointwise.

Currying: it is natural to require that (X xX)=X ~ X = (X=X) (recall @ and fun).
. (many other requirements/desiderata)

Question: Are there some abstract conditions that, when satisfied by X, guarantee
that X is a denotational model for the untyped A-calculus with all/some desiderata?

Question: Where should these algebraic structures X live as a general setting?

Answer: To be as general as possible, let us have a quick look at category theory!
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© Category Theory in a Nutshell
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A category C is given by:
@ a collection of objects;
o for each pair of objects A and B, a collection C'(A, B) of morphisms (aka arrows);
e for each triple A, B, C of objects, a composition operation
o: C(B,C) x C(A,B) — C(A, C) satistying associativity, i.e.
fo(goh)=(fog)oh for all f € C(C,D), g € C(B,C), h € C(A,B);
o for every object A, a morphism ida € C(A, A), called identity on A, such that
idpof=f=foida for all f € C(A, B).
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@ a collection of objects;

o for each pair of objects A and B, a collection C(A, B) of morphisms (aka arrows);

e for each triple A, B, C of objects, a composition operation

o: C(B,C) x C(A, B) — C(A, C) satistying associativity, i.e.
fo(goh)=(fog)oh for all f € C(C,D), g € C(B,C), h € C(A,B);
o for every object A, a morphism ida € C(A, A), called identity on A, such that
idpof=f=foida for all f € C(A, B).

A category C' is large or small depending on whether its collection of objects is a
proper class or a set, respectively.
A large category C is locally small if C(A, B) is a set, for every pair of objects A, B.
Under this hypothesis (which holds in our examples), C(A, B) is also called a hom-set.
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@ a collection of objects;
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o: C(B,C) x C(A, B) — C(A, C) satistying associativity, i.e.
fo(goh)=(fog)oh for all f € C(C,D), g € C(B,C), h € C(A,B);
o for every object A, a morphism ida € C(A, A), called identity on A, such that
idpof=f=foida for all f € C(A, B).

Notation: f: A — B stands for f € C(A, B), if the category C' is unambiguously clear.

Rmk: Objects may not be sets. Morphisms may not be functions.

Notation: Equalities among morphisms (like f o g = h) are often depicted using
commutative diagrams, where “points” stand for objects and “arrows” for morphisms.
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A category C is given by:
@ a collection of objects;
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o for every object A, a morphism ida € C(A, A), called identity on A, such that
idpof=f=foida for all f € C(A, B).

Examples

@ The category Set has sets as objects and functions as morphisms. Identities and
composition are defined as expected.
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A partially ordered set (poset for short) is a set X with an order (that is, reflexive,
transitive and antisymmetric) relation < on X.

In a poset (X, <), a subset D C X is directed if D # () and every z,y € D admit an
upper bound, that is, there is z € D such that x < z and y < z.

In a poset (X, <), the supremum or least upper bound (lub for short) \/ D of D C X
is the smallest z € X such that z < z for all z € X.

A complete partial order (cpo for short) is a partially ordered set (X, <) such that:
o there is a least element | € X, that is, L < z for all z € X;
o every directed D C X admits a lub \/ D € X.

Examples

@ The category Set has sets as objects and functions as morphisms. Identities and
composition are defined as expected.

@ The category Rel has sets as objects and relations as morphisms. Identity for an
obj. Aisida = {(a,a) | a € A}. Composition of R€ Rel(B, (), S€ Rel(A, B) is:

RoS={(a,c) e AxC|3be B:(a,b) €S, (bc) € R}

@ The category Cpo has cpo’s as objects and Scott-continuous functions as
morphisms. Identities and composition are defined as expected.

9/18



In a category C, a product of two objects A1, Az is an object A1 X Az with two
morphisms 7;: A1 X A2 — A; called projections (with ¢ € {1,2}) such that, for every
object C and morphisms f;: C — A; (with ¢ € {1,2}), there is a unique morphism
(f1, f2): C — A1 x Az such that m; o (f1, fo) = fi (with ¢ € {1,2}).

C
That is, the following diagrams commute f1 : i( f1, f2>i &
~
A1 = A1 X A2 = A2
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In a category C, a product of two objects A1, Az is an object A1 X Ay with two
morphisms 7;: A1 X Ag — A; called projections (with ¢ € {1,2}) such that, for every
object C and morphisms f;: C — A; (with ¢ € {1,2}), there is a unique morphism
<f1,f2>: C — A; x Ay such that 75 O <f1,f2> = fz (With 1€ {1,2}).

C
That is, the following diagrams commute f : l( fN
A1 A1 X A2 T) A2

1

Lemma (Uniqueness and associativity of the product)

The product of two objects (if any) is unique up to isomorphism (i.e. given two products
(A1 X Ag, 1, m2) and (A1 X' Aa, 1, m5), there are morphisms f: A1 x As — Ay x' Ay
and g: Ay x' Ay — A1 X Az such that fog=ida,xa, and go f =ida,xa,)-

The product is associative (up to isomorphism,).
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~+
A1 = A1 X A2 T A2

In a category C, an object 1 is terminal if, for every object A, there is a unique
morphism !4 € C(A4,1).

A category C' is Cartesian if it has a terminal object 1 and every pair of objects
A1, Az has a product (A1 X Az, 71, 72).
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In a category C, a product of two objects A1, Az is an object A1 X Ay with two
morphisms 7;: A1 X Ay — A; called projections (with ¢ € {1,2}) such that, for every
object C' and morphisms f;: C — A; (with ¢ € {1,2}), there is a unique morphism
<f1,f2>: C — Al XAQ such that i O <f1,f2> = fz (Wlth 1 € {1,2})

c
That is, the following diagrams commute f1 : l( fM
A1 A1 X A2 T} A2

1

In a category C, an object 1 is terminal if, for every object A, there is a unique
morphism !4 € C(4,1).

A category C is Cartesian if it has a terminal object 1 and every pair of objects
A1, Ay has a product (A1 X Ag, 71, 72).

Lemma (The terminal object is the neutral element of the product)

In a Cartesian category, for every object A, the objects 1 x A and A and A x 1 are
isomorphic (that is, there are morphisms f: 1XA — A and g: A — 1x A such that
fog=1ida and go f = idixa, and similarly for A and A x 1).
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In a category C, a product of two objects A1, Az is an object A1 X Ay with two
morphisms 7;: A1 x Az — A; called projections (with ¢ € {1,2}) such that, for every
object C' and morphisms f;: C — A; (with ¢ € {1,2}), there is a unique morphism
<f1,f2>1 C — Aj x Az such that m; o <f1,f2> = s (With i€ {1,2}).

C
That is, the following diagrams commute f1 : l< fN
A1 A1 X A2 T) A2

1

In a category C, an object 1 is terminal if, for every object A, there is a unique
morphism !4 € C(4,1).

A category C is Cartesian if it has a terminal object 1 and every pair of objects
Al, A2 has a product (Al ><Az77'('17 71'2).
Example

@ For every n € N, define a notion of n-product (A1 X -+ X A,,71,...,m,) of the
objects A1, ..., A,, by generalizing the definition of product and terminal object.

@ Prove that a Cartesian category has the n-product of any n objects, for all n € N.

10 /18



Notation: In a Cartesian category C, for every morphisms f; € C(A4;, B;) with
i € {1,2}, the product map is fi X fo = (f1 o w1, fa o m2) € C(A1 X Az, B1 X B2).

A Cartesian category C is closed (CCC for short) if for every objects A, B there is an
object A = B, called exponent, and a morphism eva g € C(A= B x A, B), called

evaluation, such that, for every f € C(C' x A, B) there is a unique
curry(f) € C(C, A= B) such that eva, p o (curry(f) x ida) = f.

CxA ! B
That is, the following diagram commutes  curry(f)xid Ai A
4 : )

A=Bx A

11/18



Notation: In a Cartesian category C, for every morphisms f; € C(A4;, B;) with
i € {1,2}, the product map is fi X fo = (f1 o w1, fa o m2) € C(A1 X Az, B1 X B2).

A Cartesian category C' is closed (CCC for short) if for every objects A, B there is an
object A = B, called ezponent, and a morphism eva g € C(A= B x A, B), called
evaluation, such that, for every f € C(C'x A, B) there is a unique

curry(f) € C(C, A= B) such that eva g o (curry(f) x ida) = f.

CxA ! B
That is, the following diagram commutes  curry(f)xid Ai A
4 : )

A=Bx A
Idea: The object A = B ‘“represents/internalizes” the hom-set C(A, B).
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@ The category Set is Cartesian closed. (Which exponent? Which evaluation?)
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Notation: In a Cartesian category C, for every morphisms f; € C(A4;, B;) with
i € {1,2}, the product map is fi X fo = (f1 o w1, fa o m2) € C(A1 X Az, B1 X B2).

A Cartesian category C is closed (CCC for short) if for every objects A, B there is an
object A = B, called exponent, and a morphism eva g € C(A= B x A, B), called
evaluation, such that, for every f € C(C' x A, B) there is a unique

curry(f) € C(C, A= B) such that eva, p o (curry(f) x ida) = f.

CxA ! B
That is, the following diagram commutes  curry(f)xid Ai A
4 : )

A=Bx A

Lemma
In a CCC, for every f: CxA— B, g:C — B, h: D — C and k: C — A, we have:

(k,g)oh = (koh,goh) :D — AxB (pair)

eva,p o (curry(f),g) = f o (idc, g) :C—B (Be)
curry(f) o h = curry(f o (h x ida)) :D—- A=B (curry)

Proof. Exercise! O
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@ Categorical Semantics for the (Untyped) A-Calculus
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In a CCC C, a reflexive object is a triple (U, A, fun) where A, fun are a retraction on
the object U, that is, A € C(U=-U, U) and fun € C(U, U=-U) with funo A = idy=y .

Idea: A reflexive object (U, A, fun) is a non-set-theoretic way to say “(U=-U) C U”.

Rmk: It is possible to define @ € C(U x U, U) such that fun = curry(@). The notation
for these morphisms are consistent with what you have concretely seen in Days 1-2.
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In a CCC C, a reflexive object is a triple (U, A, fun) where A, fun are a retraction on
the object U, that is, A € C(U=-U, U) and fun € C(U, U=U) with fun o A = idy=y.

Examples
@ In the CCC Set, there is no reflexive object. (How to prove it?)
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In a CCC C, a reflexive object is a triple (U, A, fun) where A, fun are a retraction on
the object U, that is, A € C(U=-U, U) and fun € C(U, U=-U) with fun o A = idy=y.
Examples

@ In the CCC Set, there is no reflexive object. (How to prove it?)

@ In the category Rel, there is no reflexive object. (Why?)
@ In the CCC Chpo, there is a reflexive object. (Which one? The cpo (P(N), Q)!)
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In a CCC C, a reflexive object is a triple (U, A, fun) where A, fun are a retraction on
the object U, that is, A € C(U=U, U) and fun € C(U, U=-U) with fun o A = idy=y.

A sequence & = (x1,...,Ty) of variables is adequate for M € A if the x;’s are pairwise
distinct and fv(M) C {z1,...,zn}. We write U™ for the n-product U x .7. x U.

We are going to interpret A-terms in any reflexive object of any CCC.
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the object U, that is, A € C(U=U, U) and fun € C(U, U=-U) with fun o A = idy=y.

A sequence & = (x1,...,Ty) of variables is adequate for M € A if the x;’s are pairwise
distinct and fv(M) C {z1,...,zn}. We write U™ for the n-product U x .7. x U.

We are going to interpret A-terms in any reflexive object of any CCC.

Definition (Categorical semantics/interpretation of A-terms)
Let & = (z1,...,2n) be adequate for M € A. The categorical semantics of M wrt Z in a
reflexive object (U, A, fun) of a CCC is a morphism [M]z: U™ — U defined by:
[zi]z = m where i € {1,...,n}
[MN]z = evu,u o (fun o [M]z, [N]z)
[Ay.N]z = X o curry([N]z,y) we assume wlog y & {z1,...,2n}
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In a CCC C, a reflexive object is a triple (U, A, fun) where A, fun are a retraction on
the object U, that is, A € C(U=U, U) and fun € C(U, U=-U) with fun o A = idy=y.

A sequence & = (x1,...,Ty) of variables is adequate for M € A if the x;’s are pairwise
distinct and fv(M) C {z1,...,zn}. We write U™ for the n-product U x .7. x U.

We are going to interpret A-terms in any reflexive object of any CCC.

Definition (Categorical semantics/interpretation of A-terms)
Let & = (z1,...,2n) be adequate for M € A. The categorical semantics of M wrt Z in a
reflexive object (U, A, fun) of a CCC is a morphism [M]z: U™ — U defined by:
[zi]z = m where i € {1,...,n}
[MN]z = evu,u o (fun o [M]z, [N]z)
[Ay.N]z = X o curry([N]z,y) we assume wlog y & {z1,...,2n}

Notation: When we write [M]z we assume that & is adequate for M, and we keep
implicit the reflexive object (U, A, fun) where we interpret M (but it depends on it!).
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Lemma (Substitution)
Lt MNEA. [fo ¢ §= (g1, n) then [z = W}y = Mg o (idom, [N]5). J

Proof. By induction on M. Exercise! O
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Lemma (Substitution)
LetMNEA. 13 ¢ 7= (01, 4n) then [M{z = N}y = Mgz o (idom, []5). J

Proof. By induction on M. Exercise! O

Theorem (Invariance/Soundness)
LetM,N € A. IfM —3 N then [[M]]g* = [[N]]g J

Proof. The key case is M = (Az.M1)M2 —g My {z := M2} = N. We assume wlog z ¢ ¥.
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Lemma (Substitution)
LetMNEA. 13 ¢ 7= (01, 4n) then [M{z = N}y = Mgz o (idom, []5). J

Proof. By induction on M. Exercise! O

Theorem (Invariance/Soundness)
LetM,N € A. IfM —3 N then [[M]]g* = [[N]]g J

Proof. The key case is M = (Az.M1)M2 —g My {z := M2} = N. We assume wlog z ¢ ¥.

M)z = [(AzM1)M] 7 = evy,u o (fun o [AzM ]z, [M]g) (def. of [-])
=evy,y o (funo Ao curry([Mi]g,2), [M2]g)  (def. of [-])
= evy,u o (curry([Mi]lg.=), [M2]7) (retraction)
= [Mi]gz o (idun, [M2]g) (rule Be)
= M {z =M2}]7 = [N]5 (substitution)
The other cases follow from the IH (proof by induction on the def. of M — 3 N). O

Even contextuality holds. Consistency depends on the specific reflexivity object.
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@ Summary, Exercises, Bibliography
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e What does denotational semantics is and is for.

What have we
learned today?

Some abstract properties that an algebraic
structure has to fulfill to be a denotational
semantics of the untyped A-calculus.

A taste of category theory. o

The notions of Cartesian closed category and
reflexive object.

How to interpret the untyped A-calculus in a
reflexive object of a Cartesian closed category.
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e What does denotational semantics is and is for.

What have we
learned today?

e Some abstract properties that an algebraic
structure has to fulfill to be a denotational
semantics of the untyped A-calculus.

o A taste of category theory. o

o The notions of Cartesian closed category and
reflexive object.

o How to interpret the untyped A-calculus in a
reflexive object of a Cartesian closed category.

Rmk: Many of the notions and morphisms we have seen today are just an abstract
version of what you have already seen instantiated more concretely in Days 1-2.
The fact that we are using the same notations is not by chance. ..

Hint: Read again Days 1-2 slides keeping in mind the content of Day 3, and vice versa.
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@ Do the proofs of the statements on the slides.

o Look at our notes on the webpage of the course, there are plenty of details,
proofs and exercises. Today’s notes are under construction!

o The exercises will have solutions (but try to do them by yourself before looking
at them!).

o Don’t hesitate to ask us questions in person or on Discord about lectures,
exercises, solutions, further reading.
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https://davidebarbarossa12.github.io/Enseignements/2024-25/esslli25_notes3.pdf
https://davidebarbarossa12.github.io/Enseignements/2024-25/ESSLLI.html

Summary, Exercises, Bibliography

o Chapters 1, 2, 3 and 9 of:
Asperti A., Longo G.: Categories, Types and Structures, 1991,
https://www.di.ens.fr/users/longo/files/CategTypesStructures/book.pdf

o Chapter 4 of:
Amadio R., Curien P-L.: Domains and lambda-calculi, 1996,
https://www.cambridge.org/core/books/domains-and-lambdacalculi/
4C6AB6938E436CFABD5A8533B76A7F23

o Chapters 1 and 5 of:
Barendregt H. P.: The lambda-calculus, its syntax and semantics, 1984,
https://www.sciencedirect.com/bookseries/
studies-in-logic-and-the-foundations-of-mathematics/vol/103

o Chapter 1 of:
Manzonetto G.: Models and theories of A-calculus, PhD thesis, 2008,
https://www.irif.fr/~gmanzone/ManzonettoPhdThesis.pdf

e To go (much) further:
Barendregt H. P., Manzonetto G.: A Lambda Calculus Satellite, 2022,
https://www.collegepublications.co.uk/logic/mlf/700035
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