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Previously...

We introduced the λ-calculus, a basic functional
programming language inspired by the graph model.
We gave it a denotational semantics in the graph
model.
We gave it a operational semantics.
Even if minimal, the operational semantics makes it
a Turing-complete programming language.
We programmed some basic functions on simple
datatypes.

What have we
learned yesterday?
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The λ-Calculus,
from Minimal to Classical Logic

Lecture 3:

Category Theory for Denotational Semantics

Read the notes: they are full of details, proofs, explanations, exercises, bibliography!
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What is Denotational Semantics for Programming Languages?

Denotational semantics describes the meaning of programs via mathematical objects.

Idea: The denotation of a program M describes what M does, regardless of how.

Some tenets of denotational semantics JMK of a program M:

1 Contextuality: If JMK = JM′K then JC⟨M⟩K = JC⟨M′⟩K for every context C.
; The denotation of a program is built from the denotations of its subprograms.

2 Invariance under evaluation: If M →β M′ then JMK = JM′K.
; The denotation is invariant under evaluation, the interest is what, not how.

3 Consistency: There are programs M and M′ such that JMK ̸= JM′K.
; The denotation of a program is informative, it does not collapse everything.
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What is Denotational Semantics for Programming Languages?

In which kind of algebraic structures can λ-terms be denoted/interpreted? A λ-term
1 can serve as an argument ; it should be denoted in an algebraic structure X;
2 can serve as a function to apply to an argument ; it should be denoted in X⇒X.

As a λ-term M can be applied to itself, it is natural to ask for “(X⇒X) ⊆ X”.

By Cantor’s theorem, X cannot be a set where X ⇒ X is its function space.
Restricting X⇒X to the set of some specific maps, possibly “X⇒X ⊆ X” holds.
Ex. X is a cpo, X⇒X is the set of Scott-continuous maps on X ordered pointwise.

Currying: it is natural to require that (X×X)⇒X ≃ X⇒(X⇒X) (recall @ and fun).
. . . (many other requirements/desiderata)

Question: Are there some abstract conditions that, when satisfied by X, guarantee
that X is a denotational model for the untyped λ-calculus with all/some desiderata?
Question: Where should these algebraic structures X live as a general setting?

Answer: To be as general as possible, let us have a quick look at category theory!
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Category Theory in a Nutshell

A category C is given by:
a collection of objects;
for each pair of objects A and B, a collection C(A,B) of morphisms (aka arrows);
for each triple A,B,C of objects, a composition operation
◦ : C(B,C)×C(A,B) → C(A,C) satisfying associativity, i.e.

f ◦ (g ◦ h) = (f ◦ g) ◦ h for all f ∈ C(C,D), g ∈ C(B,C), h ∈ C(A,B);

for every object A, a morphism idA ∈ C(A,A), called identity on A, such that

idB ◦ f = f = f ◦ idA for all f ∈ C(A,B).

Examples
1 The category Set has sets as objects and functions as morphisms. Identities and

composition are defined as expected.

2 The category Rel has sets as objects and relations as morphisms. Identity for an
obj. A is idA = {(a, a) | a ∈ A}. Composition of R∈Rel(B,C), S∈Rel(A,B) is:

R ◦ S = {(a, c) ∈ A× C | ∃ b ∈ B : (a, b) ∈ S, (b, c) ∈ R}

3 The category Cpo has cpo’s as objects and Scott-continuous functions as
morphisms. Identities and composition are defined as expected.
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Notation: Equalities among morphisms (like f ◦ g = h) are often depicted using
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Category Theory in a Nutshell

A partially ordered set (poset for short) is a set X with an order (that is, reflexive,
transitive and antisymmetric) relation ≤ on X.
In a poset (X,≤), a subset D ⊆ X is directed if D ̸= ∅ and every x, y ∈ D admit an
upper bound, that is, there is z ∈ D such that x ≤ z and y ≤ z.
In a poset (X,≤), the supremum or least upper bound (lub for short)

∨
D of D ⊆ X

is the smallest z ∈ X such that x ≤ z for all x ∈ X.
A complete partial order (cpo for short) is a partially ordered set (X,≤) such that:

there is a least element ⊥ ∈ X, that is, ⊥ ≤ x for all x ∈ X;
every directed D ⊆ X admits a lub

∨
D ∈ X.
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Category Theory in a Nutshell

In a category C, a product of two objects A1, A2 is an object A1 ×A2 with two
morphisms πi : A1×A2 → Ai called projections (with i ∈ {1, 2}) such that, for every
object C and morphisms fi : C → Ai (with i ∈ {1, 2}), there is a unique morphism
⟨f1, f2⟩ : C → A1×A2 such that πi ◦ ⟨f1, f2⟩ = fi (with i ∈ {1, 2}).

That is, the following diagrams commute
C

A1 A1 ×A2 A2

f1 ⟨f1,f2⟩
f2

π1 π2

In a category C, an object 1 is terminal if, for every object A, there is a unique
morphism !A ∈ C(A,1).

A category C is Cartesian if it has a terminal object 1 and every pair of objects
A1, A2 has a product (A1×A2, π1, π2).
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Lemma (Uniqueness and associativity of the product)

The product of two objects (if any) is unique up to isomorphism (i.e. given two products
(A1×A2, π1, π2) and (A1×′A2, π

′
1, π

′
2), there are morphisms f : A1×A2 → A1×′A2

and g : A1×′A2 → A1×A2 such that f ◦ g = idA1×′A2
and g ◦ f = idA1×A2).

The product is associative (up to isomorphism).
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morphism !A ∈ C(A,1).

A category C is Cartesian if it has a terminal object 1 and every pair of objects
A1, A2 has a product (A1×A2, π1, π2).

Lemma (The terminal object is the neutral element of the product)
In a Cartesian category, for every object A, the objects 1×A and A and A× 1 are
isomorphic (that is, there are morphisms f : 1×A → A and g : A → 1×A such that
f ◦ g = idA and g ◦ f = id1×A, and similarly for A and A× 1).
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Category Theory in a Nutshell

Notation: In a Cartesian category C, for every morphisms fi ∈ C(Ai, Bi) with
i ∈ {1, 2}, the product map is f1×f2 = ⟨f1 ◦ π1, f2 ◦ π2⟩ ∈ C(A1×A2, B1×B2).

A Cartesian category C is closed (CCC for short) if for every objects A,B there is an
object A ⇒ B, called exponent, and a morphism evA,B ∈ C(A⇒B ×A, B), called
evaluation, such that, for every f ∈ C(C×A, B) there is a unique
curry(f) ∈ C(C, A⇒B) such that evA,B ◦ (curry(f)× idA) = f .

That is, the following diagram commutes
C ×A B

A⇒B ×A

f

curry(f)×idA evA,B

Lemma
In a CCC, for every f : C×A → B, g : C → B, h : D → C and k : C → A, we have:

⟨k, g⟩ ◦ h = ⟨k ◦ h, g ◦ h⟩ : D → A×B (pair)
evA,B ◦ ⟨curry(f), g⟩ = f ◦ ⟨idC , g⟩ : C → B (βe)

curry(f) ◦ h = curry(f ◦ (h× idA)) : D → A⇒B (curry)

Proof. Exercise!
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Categorical Semantics for the (Untyped) λ-Calculus

In a CCC C, a reflexive object is a triple (U, λ, fun) where λ, fun are a retraction on
the object U , that is, λ ∈ C(U⇒U, U) and fun ∈ C(U, U⇒U) with fun ◦ λ = idU⇒U .

Idea: A reflexive object (U, λ, fun) is a non-set-theoretic way to say “(U⇒U) ⊆ U ”.

Rmk: It is possible to define @ ∈ C(U×U, U) such that fun = curry(@). The notation
for these morphisms are consistent with what you have concretely seen in Days 1–2.

Definition (Categorical semantics/interpretation of λ-terms)

Let x⃗ = (x1, . . . , xn) be adequate for M ∈ Λ. The categorical semantics of M wrt x⃗ in a
reflexive object (U, λ, fun) of a CCC is a morphism JMKx⃗ : Un → U defined by:

JxiKx⃗ = πi where i ∈ {1, . . . , n}
JM NKx⃗ = evU,U ◦ ⟨fun ◦ JMKx⃗, JNKx⃗⟩

Jλy.NKx⃗ = λ ◦ curry(JNKx⃗,y) we assume wlog y /∈ {x1, . . . , xn}

Notation: When we write JMKx⃗ we assume that x⃗ is adequate for M, and we keep
implicit the reflexive object (U, λ, fun) where we interpret M (but it depends on it!).
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Categorical Semantics for the (Untyped) λ-Calculus

Lemma (Substitution)

Let M, N ∈ Λ. If x /∈ y⃗ = (y1, . . . , yn) then JM{x := N}Ky⃗ = JMKy⃗,x ◦ ⟨idUn , JNKy⃗⟩.

Proof. By induction on M. Exercise!

Theorem (Invariance/Soundness)

Let M, N ∈ Λ. If M →β N then JMKy⃗ = JNKy⃗.

Proof. The key case is M = (λx.M1)M2 →β M1{x := M2} = N. We assume wlog x /∈ y⃗.

JMKx⃗ = J(λx.M1)M2Ky⃗ = evU,U ◦ ⟨fun ◦ Jλx.M1Ky⃗, JM2Ky⃗⟩ (def. of J·K)
= evU,U ◦ ⟨fun ◦ λ ◦ curry(JM1Ky⃗,x), JM2Ky⃗⟩ (def. of J·K)
= evU,U ◦ ⟨curry(JM1Ky⃗,x), JM2Ky⃗⟩ (retraction)
= JM1Ky⃗,x ◦ ⟨idUn , JM2Ky⃗⟩ (rule βe)
= JM1{x := M2}Ky⃗ = JNKy⃗ (substitution)

The other cases follow from the IH (proof by induction on the def. of M →β N).

Even contextuality holds. Consistency depends on the specific reflexivity object.
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Theorem (Invariance/Soundness)

Let M, N ∈ Λ. If M →β N then JMKy⃗ = JNKy⃗.

Proof. The key case is M = (λx.M1)M2 →β M1{x := M2} = N. We assume wlog x /∈ y⃗.

JMKx⃗ = J(λx.M1)M2Ky⃗ = evU,U ◦ ⟨fun ◦ Jλx.M1Ky⃗, JM2Ky⃗⟩ (def. of J·K)
= evU,U ◦ ⟨fun ◦ λ ◦ curry(JM1Ky⃗,x), JM2Ky⃗⟩ (def. of J·K)
= evU,U ◦ ⟨curry(JM1Ky⃗,x), JM2Ky⃗⟩ (retraction)
= JM1Ky⃗,x ◦ ⟨idUn , JM2Ky⃗⟩ (rule βe)
= JM1{x := M2}Ky⃗ = JNKy⃗ (substitution)

The other cases follow from the IH (proof by induction on the def. of M →β N).

Even contextuality holds. Consistency depends on the specific reflexivity object.
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Summary, Exercises, Bibliography

1 What is Denotational Semantics for Programming Languages?

2 Category Theory in a Nutshell

3 Categorical Semantics for the (Untyped) λ-Calculus

4 Summary, Exercises, Bibliography
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Summary, Exercises, Bibliography

What does denotational semantics is and is for.
Some abstract properties that an algebraic
structure has to fulfill to be a denotational
semantics of the untyped λ-calculus.
A taste of category theory.
The notions of Cartesian closed category and
reflexive object.
How to interpret the untyped λ-calculus in a
reflexive object of a Cartesian closed category.

What have we
learned today?

Rmk: Many of the notions and morphisms we have seen today are just an abstract
version of what you have already seen instantiated more concretely in Days 1–2.
The fact that we are using the same notations is not by chance. . .

Hint: Read again Days 1–2 slides keeping in mind the content of Day 3, and vice versa.
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Summary, Exercises, Bibliography

Do the proofs of the statements on the slides.

Look at our notes on the webpage of the course, there are plenty of details,
proofs and exercises. Today’s notes are under construction!

The exercises will have solutions (but try to do them by yourself before looking
at them!).

Don’t hesitate to ask us questions in person or on Discord about lectures,
exercises, solutions, further reading.
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https://davidebarbarossa12.github.io/Enseignements/2024-25/esslli25_notes3.pdf
https://davidebarbarossa12.github.io/Enseignements/2024-25/ESSLLI.html


Summary, Exercises, Bibliography

Chapters 1, 2, 3 and 9 of:
Asperti A., Longo G.: Categories, Types and Structures, 1991,
https://www.di.ens.fr/users/longo/files/CategTypesStructures/book.pdf

Chapter 4 of:
Amadio R., Curien P-L.: Domains and lambda-calculi, 1996,
https://www.cambridge.org/core/books/domains-and-lambdacalculi/
4C6AB6938E436CFA8D5A8533B76A7F23

Chapters 1 and 5 of:
Barendregt H. P.: The lambda-calculus, its syntax and semantics, 1984,
https://www.sciencedirect.com/bookseries/
studies-in-logic-and-the-foundations-of-mathematics/vol/103

Chapter 1 of:
Manzonetto G.: Models and theories of λ-calculus, PhD thesis, 2008,
https://www.irif.fr/~gmanzone/ManzonettoPhdThesis.pdf

To go (much) further:
Barendregt H. P., Manzonetto G.: A Lambda Calculus Satellite, 2022,
https://www.collegepublications.co.uk/logic/mlf/?00035
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https://www.di.ens.fr/users/longo/files/CategTypesStructures/book.pdf
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https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
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https://www.collegepublications.co.uk/logic/mlf/?00035
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