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The λ-calculus,
from minimal to classical logic

What will you (hopefully!) learn: You will have an idea of some basic but
fundamental aspects of the relationship between (λ-calculus based)

programming language theory and (Curry-Howard based) mathematical logic.

Lecture 1: Topology/domain-theory of the “graph model” over P(N)
Davide Barbarossa

Lecture 2: The λ-calculus
Davide Barbarossa

Lecture 3: Category theory for denotational semantics
Giulio Guerrieri

Lecture 4: Curry-Howard and minimal logic
Giulio Guerrieri

Lecture 5: Krivine’s approach to classical logic
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The λ-calculus,
from minimal to classical logic

Lecture 1:

Topology/domain-theory
of the “graph model” over P(N)

Read the notes: they are full of details, proofs, explanations, exercises, bibliography!

Davide Barbarossa
db2437@bath.ac.uk

Dept of Computer Science

ESSLLI Summer School, Bochum (Germany) 28/07/2025
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What do we mean by computable?

Problem: Compute
√
S, for some given S ∈ R
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Continuous functions on X are those for which

O open ⇒ f−1O open

We set R := P(N) and Rfin := Pfin(N). For a ∈ R, let ↑a := {b ∈ R | b ⊇ a}.
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The open sets O ⊆ R are the ones of shape O =
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This is possible as {↑e ⊆ R | e ⊆fin N} ⊆ P(R) is a base for a topology on P(N).
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The open sets O ⊆ R are the ones of shape O =

⋃
e∈I ↑e, for some I ⊆ Rfin.

This is possible as {↑e ⊆ R | e ⊆fin N} ⊆ P(R) is a base for a topology on P(N).

Theorem
The open sets of our topology are exactly the O ⊆ R which satisfy the following
condition for all a ∈ R:

a ∈ O ⇔ O ∋ e ⊆fin a, for some e ∈ R.
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admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).
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13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, given a ∈ R, the set D = {e ∈ R | e ⊆fin a} =:↓fin a = Pfin(a) is directed:
the upper bound in D of e, e′ ∈ D is e∪ e′ ∈ D (in this case it is even their sup).

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, given a ∈ R, the set D = {e ∈ R | e ⊆fin a} =:↓fin a = Pfin(a) is directed:
the upper bound in D of e, e′ ∈ D is e∪ e′ ∈ D (in this case it is even their sup).

Definition

Let (X,≤) be a poset. Its Scott-topology is defined by declaring open the
subsets U of X such that:

1 U is upward closed (i.e. U ∋ x ≤ y ⇒ U ∋ y)
2 for all directed D ⊆ X which admits a lub

∨
D ∈ U , we have D ∩ U ̸= ∅.

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, given a ∈ R, the set D = {e ∈ R | e ⊆fin a} =:↓fin a = Pfin(a) is directed:
the upper bound in D of e, e′ ∈ D is e∪ e′ ∈ D (in this case it is even their sup).

Definition

Let (X,≤) be a poset. Its Scott-topology is defined by declaring open the
subsets U of X such that:

1 U is upward closed (i.e. U ∋ x ≤ y ⇒ U ∋ y)
2 for all directed D ⊆ X which admits a lub

∨
D ∈ U , we have D ∩ U ̸= ∅.

Example (Proposition)
Our topology on R coincides with the Scott-topology of the poset (R,⊆).

13 / 23



The Scott-topology of a poset

In a poset (X,≤), we say that an element e ∈ X is compact iff for all directed
D ⊆ X admitting

∨
D, we have: if e ≤

∨
D then e ≤ d for some d ∈ D.
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Theorem
Let X,Y be posets and f : X → Y . The following are equivalent:
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2 For all directed D ⊆ X admitting

∨
D in X, there is

∨
(fD) in Y and:∨

(fD) = f(
∨

D). (Scott-Continuity)

If moreover X,Y are “algebraic” (like R), then the above are equivalent to:
3 f is monotone (i.e. a ≤ b implies f(a) ≤ f(b)) and, for all a ∈ X, d ∈ Y ,

d compact ≤ f(a) =⇒ there is e compact ≤ a such that d ≤ f(e).

4 For all a ∈ X we have f(a) =
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e compact ≤a f(e)
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“We can encode everything into N! ”

pair : N× N → N, pair(n,m) := 2n(2m+ 1)− 1

list : N∗ → N list([]) := 0 and list(n :: l) := 1 + pair(n, list(l))

⟨_,_⟩ : N∗ × N → N ⟨l, n⟩ := pair(list(l), n)
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λ : (R ⇒ R) → R, λ(f) := {⟨l,m⟩ ∈ N | l ∈ N∗, m ∈ f(set(l))}

Theorem
We indeed have Im(fun) ⊆ (R ⇒ R).
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Encoding (continuous) functions as points

“We can encode everything into N! ”

Corollary
We have a bijective encoding ⟨_,_⟩ of N∗ × N into N
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Encoding (continuous) functions as points

Theorem
@, fun and λ are continuous.
The pair (λ, fun) defines a topological retraction of R onto
Im(λ) ≈ (R ⇒ R), i.e.

fun ◦ λ = idR⇒R. (β)

For all f : R ⇒ R we have:

λ(fun(f)) ⊇ f and λ(f) =
⋃

fun(a)=f

a.

Definition
The structure (R, λ,@) is called the graph model.
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Interesting properties of continuous functions!

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography
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Interesting properties of continuous functions!

All continuous f : R → R admit fixed points.
The function

Y : (R ⇒ R) → R Y (f) := @(∆f ,∆f )

where ∆f := λ(f ◦@ ◦ δ) ∈ R and δ : R → R×R is the diagonal, is a fixed
point combinator, i.e. for all f : R ⇒ R, we have

f(Y (f)) = Y (f).

Theorem

The set of RE sets is closed wrt the following rules:

λ(λ ◦ curry(· · · (λ ◦ curry(projni )) · · · ))

f : R ⇒ R computable
λ(f)

a b

@(a, b)
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Summary, exercises, bibliography

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography
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Summary, exercises, bibliography

What do we intuitively mean when we say
that a function is computable
That this relates to topology
That R = (P(N),Scott) is a good topological
space for modeling this
That its topology only depends on the partial
order ⊆

What have we
learned today?

That actually, Scott-topology and Scott-continuity themselves are a
property about “approximations” in posets
That Scott-continuous functions are given by their restriction on the finite
elements of R. Also, they embed into their base space. This is done via the
retraction (λ, fun), i.e. equation (β)

That all Scott-continuous functions on R have fixed points
That λ produces RE sets and fun preserves them
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Summary, exercises, bibliography

Do the proofs of the statements in the slides
Look at our notes on the webpage of the course, there are plenty of
exercises
The exercises have solutions (but try to do them by yourself before
looking at them!)
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https://davidebarbarossa12.github.io/Enseignements/2024-25/ESSLLI.html


Summary, exercises, bibliography

Chapter 1 and Section 1 of Chapter 18 of:
Henk P. Barendregt, The lambda-calculus, its syntax and
semantics, 1984,
https://www.sciencedirect.com/bookseries/
studies-in-logic-and-the-foundations-of-mathematics/vol/103
Domain theory chapter of:
Handbook of logic in computer science: semantic structures.
1995,
https://dl.acm.org/doi/book/10.5555/218742 (an updated version is
available here)
Chapter 1 of:
Amadio R., Curien P-L, Domains and lambda-calculi, 1996,
https://www.cambridge.org/core/books/
domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
Chapter 1, 5 of:
PhD thesis of Giulio Manzonetto, Models and theories of lambda
calculus, 2008,
https://www.irif.fr/~gmanzone/ManzonettoPhdThesis.pdf
This conference of Dana Scott
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https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/103
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/103
https://dl.acm.org/doi/book/10.5555/218742
https://www.cs.ox.ac.uk/people/samson.abramsky/handbook.pdf
https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
https://www.irif.fr/~gmanzone/ManzonettoPhdThesis.pdf
https://www.youtube.com/watch?v=rqDIsqBXLCM
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