
The λ-calculus,
from minimal to classical logic

Webpage of the course

Davide Barbarossa Giulio Guerrieri
db2437@bath.ac.uk g.guerrieri@sussex.ac.uk

Dept of Computer Science Dept of Informatics

ESSLLI Summer School, Bochum (Germany) 28/07/2025 – 01/08/2025

1 / 23

https://davidebarbarossa12.github.io/Enseignements/2024-25/ESSLLI.html
db2437@bath.ac.uk
g.guerrieri@sussex.ac.uk


The λ-calculus,
from minimal to classical logic

What will you (hopefully!) learn: You will have an idea of some basic but
fundamental aspects of the relationship between (λ-calculus based)

programming language theory and (Curry-Howard based) mathematical logic.

Lecture 1: Topology/domain-theory of the “graph model” over P(N)
Davide Barbarossa

Lecture 2: The λ-calculus
Davide Barbarossa

Lecture 3: Category theory for denotational semantics
Giulio Guerrieri

Lecture 4: Curry-Howard and minimal logic
Giulio Guerrieri

Lecture 5: Krivine’s approach to classical logic
Davide Barbarossa

ESSLLI Summer School, Bochum (Germany) 28/07/2025
2 / 23



The λ-calculus,
from minimal to classical logic

Lecture 1:

Topology/domain-theory
of the “graph model” over P(N)

Read the notes: they are full of details, proofs, explanations, exercises, bibliography!

Davide Barbarossa
db2437@bath.ac.uk

Dept of Computer Science

ESSLLI Summer School, Bochum (Germany) 28/07/2025
3 / 23

https://davidebarbarossa12.github.io/Enseignements/2024-25/esslli25_notes1.pdf
db2437@bath.ac.uk


Outline

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography

4 / 23



What do we mean by computable?

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography

5 / 23



What do we mean by computable?

Problem: Compute
√
S, for some given S ∈ R

6 / 23



What do we mean by computable?

Problem: Compute
√
54899321104

6 / 23



What do we mean by computable?

Problem: Compute
√
54899321104

6 / 23



What do we mean by computable?

Problem: Compute
√
54899321104

x0 := any positive number

xn+1 :=
1

2

(
xn +

54899321104

xn

)

6 / 23



What do we mean by computable?

Problem: Compute
√
54899321104

x0 := any positive number

xn+1 :=
1

2

(
xn +

54899321104

xn

)
Then lim

n→+∞
xn =

√
54899321104

6 / 23



What do we mean by computable?

Problem: Compute
√
54899321104

x0 := any positive number

xn+1 :=
1

2

(
xn +

54899321104

xn

)
Then lim

n→+∞
xn =

√
54899321104

Heron
��We defined a function

H : N → R, H(n) := xn

such that lim
n→+∞

H(n) =
√
54899321104

6 / 23



What do we mean by computable?

Problem: Compute
√
54899321104

x0 := any positive number

xn+1 :=
1

2

(
xn +

54899321104

xn

)
Then lim

n→+∞
xn =

√
54899321104

Heron
��We defined a function

H : N ∪ {+∞} → R, H(n) := xn

H(+∞) :=
√
54899321104

such that

lim
n→+∞

H(n) =
√
54899321104 = H(+∞) = H

(
sup

n<+∞
n

)
6 / 23



What do we mean by computable?

Problem: Compute all the prime numbers

7 / 23



What do we mean by computable?

Problem: Compute all the prime numbers

7 / 23



What do we mean by computable?

Problem: Compute all the prime numbers

Sieve of Eratosthenes!

7 / 23



What do we mean by computable?

Problem: Compute all the prime numbers

Sieve of Eratosthenes!

Eratosthenes
��We defined a function

E : N → P(N), E(n) := set of the first n prime numbers

so that⋃
n∈N

E(n) = set of all the prime numbers

7 / 23



What do we mean by computable?

Problem: Compute all the prime numbers

Sieve of Eratosthenes!

Eratosthenes
��We defined a function

E : N ∪ {+∞} → P(N), E(n) := set of the first n prime numbers
E(+∞) := set of all the prime numbers

such that⋃
n∈N

E(n) = set of all the prime numbers = E(+∞) = E

(
sup

n<+∞
n

)

7 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R

finitary entity n ∈ N q ∈ Q

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

it works because sup
n∈N

n = +∞ Q is dense in R

8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R

finitary entity n ∈ N q ∈ Q

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

it works because sup
n∈N

n = +∞ Q is dense in R

H : N ∪ {+∞} → R For all q close to H(+∞),
there is n < +∞ such that

H(n) is closer to
√
54899321104 than q is

8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R a ⊆ N

finitary entity n ∈ N q ∈ Q e ⊆fin N

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

e ⊆fin a

it works because sup
n∈N

n = +∞ Q is dense in R
⋃

e⊆fina

e = a

H : N ∪ {+∞} → R For all q close to H(+∞),
there is n < +∞ such that

H(n) is closer to
√
54899321104 than q is

8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R a ⊆ N

finitary entity n ∈ N q ∈ Q e ⊆fin N

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

e ⊆fin a

it works because sup
n∈N

n = +∞ Q is dense in R
⋃

e⊆fina

e = a

E : N ∪ {+∞} → P(N) For all d ⊆fin E(+∞),
there is n < +∞ such that

E(n) ⊇ d

8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R a ⊆ N

finitary entity n ∈ N q ∈ Q e ⊆fin N

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

e ⊆fin a

it works because sup
n∈N

n = +∞ Q is dense in R
⋃

e⊆fina

e = a

A generic f For all approximation d of f(x),
there is an approximation e of x such that

f(e) is a better approximation of f(x) than d is

8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R a ⊆ N amount of

“information”

finitary entity n ∈ N q ∈ Q e ⊆fin N
finite

amount of
“information”

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

e ⊆fin a

it works because sup
n∈N

n = +∞ Q is dense in R
⋃

e⊆fina

e = a

A generic f For all approximation d of f(x),
there is an approximation e of x such that

f(e) is a better approximation of f(x) than d is
8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R a ⊆ N amount of

“information”

finitary entity n ∈ N q ∈ Q e ⊆fin N
finite

amount of
“information”

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

e ⊆fin a

it works because sup
n∈N

n = +∞ Q is dense in R
⋃

e⊆fina

e = a

f : P(N) → P(N) For all d ⊆fin f(a),
there is e ⊆fin a such that

f(e) ⊇ d

8 / 23



What do we mean by computable?

Why do we say that H and E are computable?
What property do the share from the fact that they are given by an algorithm?

(potentially)
infinitary entity a ∈ N ∪ {+∞} r ∈ R a ⊆ N amount of

“information”

finitary entity n ∈ N q ∈ Q e ⊆fin N
finite

amount of
“information”

approximation
of infinitary
by finitary

n < +∞
q ∈ Q is
“close” to
r ∈ R

e ⊆fin a

it works because sup
n∈N

n = +∞ Q is dense in R
⋃

e⊆fina

e = a

f : P(N) → P(N) For all finite portion of the output,
there is a finite portion of the input such that

the latter suffices to compute the former
8 / 23



Let’s make this rigorous: a topology over P(N)

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography

9 / 23



Let’s make this rigorous: a topology over P(N)

The fastest course on topology ever:

10 / 23



Let’s make this rigorous: a topology over P(N)

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open
sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes
that can be approximated by each other, gives rise to a set of points in the
inputs that can be approximated by each other.

10 / 23



Let’s make this rigorous: a topology over P(N)

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open
sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes
that can be approximated by each other, gives rise to a set of points in the
inputs that can be approximated by each other.

For all approximation d of f(x),
there is an approximation e of x

such that f(e) is a better approximation of f(x) than d is

10 / 23



Let’s make this rigorous: a topology over P(N)

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open
sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes
that can be approximated by each other, gives rise to a set of points in the
inputs that can be approximated by each other.

For all open set O containing f(x),
there is an open Q containing x

such that fQ ⊆ O

10 / 23



Let’s make this rigorous: a topology over P(N)

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open
sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes
that can be approximated by each other, gives rise to a set of points in the
inputs that can be approximated by each other.

For all open set O containing f(x),
there is an open Q containing x

such that Q ⊆ f−1O

10 / 23



Let’s make this rigorous: a topology over P(N)

The fastest course on topology ever:

A topology on a space X is the choice of special sets of points of X, called open
sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which every set of possible outcomes
that can be approximated by each other, gives rise to a set of points in the
inputs that can be approximated by each other.

O open ⇒ f−1O open

10 / 23



Let’s make this rigorous: a topology over P(N)

A topology on a space X is the choice of special sets of points of X, called open
sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which

O open ⇒ f−1O open

We set R := P(N) and Rfin := Pfin(N). For a ∈ R, let ↑a := {b ∈ R | b ⊇ a}.

Definition
The open sets O ⊆ R are the ones of shape O =

⋃
e∈I ↑e, for some I ⊆ Rfin.

This is possible as {↑e ⊆ R | e ⊆fin N} ⊆ P(R) is a base for a topology on P(N).

10 / 23



Let’s make this rigorous: a topology over P(N)

A topology on a space X is the choice of special sets of points of X, called open
sets, provide the set of points which can be approximated by each other

Continuous functions on X are those for which

O open ⇒ f−1O open

We set R := P(N) and Rfin := Pfin(N). For a ∈ R, let ↑a := {b ∈ R | b ⊇ a}.

Definition
The open sets O ⊆ R are the ones of shape O =

⋃
e∈I ↑e, for some I ⊆ Rfin.

This is possible as {↑e ⊆ R | e ⊆fin N} ⊆ P(R) is a base for a topology on P(N).

Theorem
The open sets of our topology are exactly the O ⊆ R which satisfy the following
condition for all a ∈ R:

a ∈ O ⇔ O ∋ e ⊆fin a, for some e ∈ R.

10 / 23



Let’s make this rigorous: a topology over P(N)

Theorem

Let f : R → R. The following are equivalent:
1 f is continuous.
2 f is monotone for ⊆ and, for all a, d ∈ R we have

d ⊆fin f(a) =⇒ there is e ⊆fin a such that d ⊆ f(e).

3 for all a ∈ R we have
f(a) =

⋃
e⊆fina

f(e).

11 / 23



Let’s make this rigorous: a topology over P(N)

Theorem

Let f : R → R. The following are equivalent:
1 f is continuous.
2 f is monotone for ⊆ and, for all a, d ∈ R we have

d ⊆fin f(a) =⇒ there is e ⊆fin a such that d ⊆ f(e).

3 for all a ∈ R we have
f(a) =

⋃
e⊆fina

f(e).

11 / 23



The Scott-topology of a poset

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography

12 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).

Example
R with ⊆ is a poset.

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, the set D = {{5, 2}, ∅, {8}} is not directed, because D contains {5, 2}, {8}
but no element of D is bigger than both {5, 2} and {8}.

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, the set D = {e ∈ R | e ⊆fin {5, 2}} = {∅, {5, 2}, {5}, {2}} is directed (in
this case it even has a maximum element).

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, given a ∈ R, the set D = {e ∈ R | e ⊆fin a} =:↓fin a = Pfin(a) is directed:
the upper bound in D of e, e′ ∈ D is e∪ e′ ∈ D (in this case it is even their sup).

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, given a ∈ R, the set D = {e ∈ R | e ⊆fin a} =:↓fin a = Pfin(a) is directed:
the upper bound in D of e, e′ ∈ D is e∪ e′ ∈ D (in this case it is even their sup).

Definition

Let (X,≤) be a poset. Its Scott-topology is defined by declaring open the
subsets U of X such that:

1 U is upward closed (i.e. U ∋ x ≤ y ⇒ U ∋ y)
2 for all directed D ⊆ X which admits a lub

∨
D ∈ U , we have D ∩ U ̸= ∅.

13 / 23



The Scott-topology of a poset

A poset is the data of a set X and a partial order relation ≤ (i.e. reflexive,
antisymmetric and transitive).
A subset D of a poset X is called directed whenever D ̸= ∅ and all d, d′ ∈ D
admit an upper bound in D (i.e. there is d′′ ∈ D such that d ≤ d′′ and d′ ≤ d′′).

Example
In R, given a ∈ R, the set D = {e ∈ R | e ⊆fin a} =:↓fin a = Pfin(a) is directed:
the upper bound in D of e, e′ ∈ D is e∪ e′ ∈ D (in this case it is even their sup).

Definition

Let (X,≤) be a poset. Its Scott-topology is defined by declaring open the
subsets U of X such that:

1 U is upward closed (i.e. U ∋ x ≤ y ⇒ U ∋ y)
2 for all directed D ⊆ X which admits a lub

∨
D ∈ U , we have D ∩ U ̸= ∅.

Example (Proposition)
Our topology on R coincides with the Scott-topology of the poset (R,⊆).

13 / 23



The Scott-topology of a poset

In a poset (X,≤), we say that an element e ∈ X is compact iff for all directed
D ⊆ X admitting

∨
D, we have: if e ≤

∨
D then e ≤ d for some d ∈ D.

Example (Proposition)
In (R,⊆), the set of compact elements is Rfin.

Theorem
Let X,Y be posets and f : X → Y . The following are equivalent:

1 f is continuous wrt the Scott-topologies on X,Y .
2 For all directed D ⊆ X admitting

∨
D in X, there is

∨
(fD) in Y and:∨

(fD) = f(
∨

D). (Scott-Continuity)

If moreover X,Y are “algebraic” (like R), then the above are equivalent to:
3 f is monotone (i.e. a ≤ b implies f(a) ≤ f(b)) and, for all a ∈ X, d ∈ Y ,

d compact ≤ f(a) =⇒ there is e compact ≤ a such that d ≤ f(e).

4 For all a ∈ X we have f(a) =
∨

e compact ≤a f(e)

14 / 23



The Scott-topology of a poset

In a poset (X,≤), we say that an element e ∈ X is compact iff for all directed
D ⊆ X admitting

∨
D, we have: if e ≤

∨
D then e ≤ d for some d ∈ D.

Example (Proposition)
In (R,⊆), the set of compact elements is Rfin.

Theorem
Let X,Y be posets and f : X → Y . The following are equivalent:

1 f is continuous wrt the Scott-topologies on X,Y .
2 For all directed D ⊆ X admitting

∨
D in X, there is

∨
(fD) in Y and:∨

(fD) = f(
∨

D). (Scott-Continuity)

If moreover X,Y are “algebraic” (like R), then the above are equivalent to:
3 f is monotone (i.e. a ≤ b implies f(a) ≤ f(b)) and, for all a ∈ X, d ∈ Y ,

d compact ≤ f(a) =⇒ there is e compact ≤ a such that d ≤ f(e).

4 For all a ∈ X we have f(a) =
∨

e compact ≤a f(e)

14 / 23



The Scott-topology of a poset

In a poset (X,≤), we say that an element e ∈ X is compact iff for all directed
D ⊆ X admitting

∨
D, we have: if e ≤

∨
D then e ≤ d for some d ∈ D.

Example (Proposition)
In (R,⊆), the set of compact elements is Rfin.

Theorem
Let X,Y be posets and f : X → Y . The following are equivalent:

1 f is continuous wrt the Scott-topologies on X,Y .
2 For all directed D ⊆ X admitting

∨
D in X, there is

∨
(fD) in Y and:∨

(fD) = f(
∨

D). (Scott-Continuity)

If moreover X,Y are “algebraic” (like R), then the above are equivalent to:
3 f is monotone (i.e. a ≤ b implies f(a) ≤ f(b)) and, for all a ∈ X, d ∈ Y ,

d compact ≤ f(a) =⇒ there is e compact ≤ a such that d ≤ f(e).

4 For all a ∈ X we have f(a) =
∨

e compact ≤a f(e)
14 / 23



Encoding (continuous) functions as points

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography

15 / 23



Encoding (continuous) functions as points

“We can encode everything into N! ”

16 / 23



Encoding (continuous) functions as points

“We can encode everything into N! ”

pair : N× N → N, pair(n,m) := 2n(2m+ 1)− 1

list : N∗ → N list([]) := 0 and list(n :: l) := 1 + pair(n, list(l))

⟨_,_⟩ : N∗ × N → N ⟨l, n⟩ := pair(list(l), n)

16 / 23



Encoding (continuous) functions as points

“We can encode everything into N! ”

Corollary
We have a bijective encoding ⟨_,_⟩ of N∗ × N into N

16 / 23



Encoding (continuous) functions as points

“We can encode everything into N! ”

Corollary
We have a bijective encoding ⟨_,_⟩ of N∗ × N into N

Consider the following two auxiliary functions:

set : N∗ → Rfin set(n1, . . . , nk) := {n1, . . . , nk}
kl : R → P(N∗) kl(a) := {l ∈ N∗ | set(l) ⊆ a}

16 / 23



Encoding (continuous) functions as points

“We can encode everything into N! ”

Corollary
We have a bijective encoding ⟨_,_⟩ of N∗ × N into N

Consider the following two auxiliary functions:

set : N∗ → Rfin set(n1, . . . , nk) := {n1, . . . , nk}
kl : R → P(N∗) kl(a) := {l ∈ N∗ | set(l) ⊆ a}

Definition
fun : R → (R ⇒ R), fun(a)(b) := {n ∈ N | there is l ∈ kl(b) s.t. ⟨l, n⟩ ∈ a}
@ : R×R → R, @ := uncurry(fun) (i.e. @(a, b) := fun(a)(b))

λ : (R ⇒ R) → R, λ(f) := {⟨l,m⟩ ∈ N | l ∈ N∗, m ∈ f(set(l))}

16 / 23



Encoding (continuous) functions as points

“We can encode everything into N! ”

Corollary
We have a bijective encoding ⟨_,_⟩ of N∗ × N into N

Consider the following two auxiliary functions:

set : N∗ → Rfin set(n1, . . . , nk) := {n1, . . . , nk}
kl : R → P(N∗) kl(a) := {l ∈ N∗ | set(l) ⊆ a}

Definition
fun : R → (R ⇒ R), fun(a)(b) := {n ∈ N | there is l ∈ kl(b) s.t. ⟨l, n⟩ ∈ a}
@ : R×R → R, @ := uncurry(fun) (i.e. @(a, b) := fun(a)(b))

λ : (R ⇒ R) → R, λ(f) := {⟨l,m⟩ ∈ N | l ∈ N∗, m ∈ f(set(l))}

Theorem
We indeed have Im(fun) ⊆ (R ⇒ R).

16 / 23



Encoding (continuous) functions as points

“We can encode everything into N! ”

Corollary
We have a bijective encoding ⟨_,_⟩ of N∗ × N into N

Consider the following two auxiliary functions:

set : N∗ → Rfin set(n1, . . . , nk) := {n1, . . . , nk}
kl : R → P(N∗) kl(a) := {l ∈ N∗ | set(l) ⊆ a}

Definition
fun : R → (R ⇒ R), fun(a)(b) := {n ∈ N | there is l ∈ kl(b) s.t. ⟨l, n⟩ ∈ a}
@ : R×R → R, @ := uncurry(fun) (i.e. @(a, b) := fun(a)(b))

λ : (R ⇒ R) → R, λ(f) := {⟨l,m⟩ ∈ N | l ∈ N∗, m ∈ f(set(l))}

Theorem
We indeed have Im(fun) ⊆ (R ⇒ R).

16 / 23



Encoding (continuous) functions as points

Theorem
@, fun and λ are continuous.
The pair (λ, fun) defines a topological retraction of R onto
Im(λ) ≈ (R ⇒ R), i.e.

fun ◦ λ = idR⇒R. (β)

For all f : R ⇒ R we have:

λ(fun(f)) ⊇ f and λ(f) =
⋃

fun(a)=f

a.

Definition
The structure (R, λ,@) is called the graph model.

17 / 23



Encoding (continuous) functions as points

Theorem
@, fun and λ are continuous.
The pair (λ, fun) defines a topological retraction of R onto
Im(λ) ≈ (R ⇒ R), i.e.

fun ◦ λ = idR⇒R. (β)

For all f : R ⇒ R we have:

λ(fun(f)) ⊇ f and λ(f) =
⋃

fun(a)=f

a.

Definition
The structure (R, λ,@) is called the graph model.

17 / 23



Encoding (continuous) functions as points

Theorem
@, fun and λ are continuous.
The pair (λ, fun) defines a topological retraction of R onto
Im(λ) ≈ (R ⇒ R), i.e.

fun ◦ λ = idR⇒R. (β)

For all f : R ⇒ R we have:

λ(fun(f)) ⊇ f and λ(f) =
⋃

fun(a)=f

a.

Definition
The structure (R, λ,@) is called the graph model.

17 / 23



Interesting properties of continuous functions!

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography

18 / 23



Interesting properties of continuous functions!

All continuous f : R → R admit fixed points.
The function

Y : (R ⇒ R) → R Y (f) := @(∆f ,∆f )

where ∆f := λ(f ◦@ ◦ δ) ∈ R and δ : R → R×R is the diagonal, is a fixed
point combinator, i.e. for all f : R ⇒ R, we have

f(Y (f)) = Y (f).

Theorem

The set of RE sets is closed wrt the following rules:

λ(λ ◦ curry(· · · (λ ◦ curry(projni )) · · · ))

f : R ⇒ R computable
λ(f)

a b

@(a, b)

19 / 23



Interesting properties of continuous functions!

All continuous f : R → R admit fixed points.
The function

Y : (R ⇒ R) → R Y (f) := @(∆f ,∆f )

where ∆f := λ(f ◦@ ◦ δ) ∈ R and δ : R → R×R is the diagonal, is a fixed
point combinator, i.e. for all f : R ⇒ R, we have

f(Y (f)) = Y (f).

Theorem

The set of RE sets is closed wrt the following rules:

λ(λ ◦ curry(· · · (λ ◦ curry(projni )) · · · ))

f : R ⇒ R computable
λ(f)

a b

@(a, b)

19 / 23



Interesting properties of continuous functions!

All continuous f : R → R admit fixed points.
The function

Y : (R ⇒ R) → R Y (f) := @(∆f ,∆f )

where ∆f := λ(f ◦@ ◦ δ) ∈ R and δ : R → R×R is the diagonal, is a fixed
point combinator, i.e. for all f : R ⇒ R, we have

f(Y (f)) = Y (f).

Theorem

The set of RE sets is closed wrt the following rules:

λ(λ ◦ curry(· · · (λ ◦ curry(projni )) · · · ))

f : R ⇒ R computable
λ(f)

a b

@(a, b)

19 / 23



Summary, exercises, bibliography

1 What do we mean by computable?

2 Let’s make this rigorous: a topology over P(N)

3 The Scott-topology of a poset

4 Encoding (continuous) functions as points

5 Interesting properties of continuous functions!

6 Summary, exercises, bibliography

20 / 23



Summary, exercises, bibliography

What do we intuitively mean when we say
that a function is computable
That this relates to topology
That R = (P(N),Scott) is a good topological
space for modeling this
That its topology only depends on the partial
order ⊆

What have we
learned today?

That actually, Scott-topology and Scott-continuity themselves are a
property about “approximations” in posets
That Scott-continuous functions are given by their restriction on the finite
elements of R. Also, they embed into their base space. This is done via the
retraction (λ, fun), i.e. equation (β)

That all Scott-continuous functions on R have fixed points
That λ produces RE sets and fun preserves them

21 / 23



Summary, exercises, bibliography

Do the proofs of the statements in the slides
Look at our notes on the webpage of the course, there are plenty of
exercises
The exercises have solutions (but try to do them by yourself before
looking at them!)

22 / 23

https://davidebarbarossa12.github.io/Enseignements/2024-25/ESSLLI.html


Summary, exercises, bibliography

Chapter 1 and Section 1 of Chapter 18 of:
Henk P. Barendregt, The lambda-calculus, its syntax and
semantics, 1984,
https://www.sciencedirect.com/bookseries/
studies-in-logic-and-the-foundations-of-mathematics/vol/103
Domain theory chapter of:
Handbook of logic in computer science: semantic structures.
1995,
https://dl.acm.org/doi/book/10.5555/218742 (an updated version is
available here)
Chapter 1 of:
Amadio R., Curien P-L, Domains and lambda-calculi, 1996,
https://www.cambridge.org/core/books/
domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
Chapter 1, 5 of:
PhD thesis of Giulio Manzonetto, Models and theories of lambda
calculus, 2008,
https://www.irif.fr/~gmanzone/ManzonettoPhdThesis.pdf
This conference of Dana Scott

23 / 23

https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/103
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/103
https://dl.acm.org/doi/book/10.5555/218742
https://www.cs.ox.ac.uk/people/samson.abramsky/handbook.pdf
https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
https://www.cambridge.org/core/books/domains-and-lambdacalculi/4C6AB6938E436CFA8D5A8533B76A7F23
https://www.irif.fr/~gmanzone/ManzonettoPhdThesis.pdf
https://www.youtube.com/watch?v=rqDIsqBXLCM

	orangeOutline
	orangeWhat do we mean by computable?
	orangeLet's make this rigorous: a topology over P(N)
	orangeThe Scott-topology of a poset
	orangeEncoding (continuous) functions as points
	orangeInteresting properties of continuous functions!
	orangeSummary, exercises, bibliography

