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1 Second order logic in a nutshell
Fix a second order signature, i.e. a set V1 of first order variables, a set V2 of second order variables,
each coming with its own arity, denoted Xk, and sets Sk1 , . . . , Skn

of functions f : Nki → N,
respectively1.

Expressions For each n ∈ N, the set En contains judgments a1, . . . , an ` e (where the context
is a finite list), called expressions in context, and is defined by the following rules:

a⃗ ` n
(n ∈ N)

a⃗ ` ai
(a1, . . . , an ∈ V1) a⃗ ` e1 · · · a⃗ ` ek

a⃗ ` f(e1, . . . , ek)
(f ∈ Sk)

1Instead of actual numerical functions, one usually one considers in the signature symbols for relations (and
calls “constants” the 0-ary relation symbols), that are to be interpreted. But, typically, one designs the language
with a particular intended interpretation in mind for the relation symbols, so that one is actually only interested
in the interpretations which choose the intended one for them. For instance, targeting, say, graph theory, one
adds to the language a binary relation symbol E with the intended interpretation of “adjacency”; or targeting
the theory of real numbers one adds a binary relation symbol ≤ with the intended interpretation of “less-than-
or-equal-to”. So, the only “real” interpretation of the signature is that of the free first and second order variables.
Here we target the theory of arithmetic, so we design our language for that. In particular, our constants are
the natural numbers (0-ary functions), and the functions in the Si’s represent the intended interpretation of the
function/relation symbols that one would add in the approach described above. The choice of functions instead
of relations is inessential, as they can be encoded within each other. For instance, if one has a language with a
relation R – giving thus rise to formulas R(e⃗) – with the intended interpretation of R as a relation fR, we encode
this by introducing fR as a characteristic function and then formula fR(e⃗) = 1 encodes the intended interpretation
of R(e⃗). Anyway, design choices are inessential: we just want a simple language for arithmetic.
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Formulas For all k, n0, . . . , nk ∈ N, the sets Fn0,...,nk
, respectively containing judgments

A{a1, . . . , an0 | Xn1 , . . . , Xnk } (where the context is a pair of finite lists) called formulas in
context, are defined by the following rules:

a⃗ ` e1 · · · a⃗ ` eni

Xni
i (e1, . . . , eni){a⃗ | X⃗}

A{a⃗ | X⃗} B{a⃗ | X⃗}
(A → B){a⃗ | X⃗}

A{a⃗, c | X⃗}
∀c.A{a⃗ | X⃗}

A{a⃗ | X⃗, Y k}
∀kY.A{a⃗ | X⃗}

which we take modulo α-equivalence on quantified first and second order variables.
For example, ∀b.∀3X.(X(a, f(b), c) → ∀d.Y (g(d, d), f(a), b)) is a formula in context {c, b, a | Y }.

Remark 1.1. We can encode the formula ⊥ := ∀0X.X, formula constructors ¬(_) := (_) → ⊥,
∧, ∨, ∃, ↔ and a formula constructor = from expressions, in the usual way, and for which we
can derive the expected formula formation rules. For example, e1 = e2 is sugar for Leibniz
∀1X.(X(e1) ↔ X(e2)) and the formula formation rule

a⃗ ` e1 a⃗ ` e2

(e = e′){a⃗ | X⃗}

is derivable. Similarly, A ∨ B is sugar for ∀0X. (A → X) → (B → X) → X, and we have the
associated formula formation derivable rule.

Therefore, we can encode the second order theories of interest, typically, Peano’s PA2.

Example 1.2. We call induction axiom the formula ∀1X. (X(0) ∧ ∀a.(X(a) → X(succ(a))) →
∀a.X(a)) (in the context {|}), where succ ∈ S1 is the successor function. Another example: for a
second order variable F 2, one can easily write a formula in context injfunF { | F} that expresses
the fact that (a future interpretation of) F is an injective function (instead of just a binary
relation). Now given χA ∈ S1 the characteristic function of a fixed set A ⊆ N, we have the
formula ∃2F. injfunF ∧∀x.(χA(x) = 1 → ∀z.(F (x, z) → Y (z))) in context { | Y 1}. This expresses
the fact that the cardinality of A is less than or equal to that of (a future interpretation of) Y .

Remark 1.3. Let Y k be a second order variable, X⃗ a list of second order variables (may or may
not including Y ) and b1, . . . , bk first order variables. Let B{Y k := 〈C, b1, . . . , bk〉} be the formula
obtained from B by replacing each Y (e1, . . . , ek) in B (if any) with C{b1 := e1, . . . , bk := ek}.
Then the following formulas formation rule is admissible:

B{a⃗ | X⃗} C{a⃗, c⃗, b1, . . . , bk | X⃗, Z⃗}
(B{Y k := 〈C, b1, . . . , bk〉}){a⃗, c⃗ | X⃗ − {Y }, Z⃗}

Derivations A derivation is a tree with nodes judgments of shape x : A `a⃗|X⃗ M : B, where
x : A is a finite set of declared program variables, a⃗, X⃗ are finite lists of first and second order
formula variables such that Ai{a⃗ | X⃗} and B{a⃗ | X⃗}, and M is a term in the following grammar
(we will later give an operational semantics):

M ::= x | λy. M | M M | callcc.

Derivations are defined by the rules in Figure 1. The meaning of callcc, and its link with
classical logic was introduced by Griffin (regardless of realisability) in [Griffin, 1990]. We will
quickly discuss it when an operational semantics for the language is provided.

The M in x : A `a⃗|X⃗ M : B is said to be the proof-term for such derivation.
An informal proof of a theorem in Peano’s arithmetic is then formally encoded as a derivation

of a x : A `a⃗|X⃗ M : B, where the Ai ∈ PA2.
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(Ai{a⃗ | X⃗})n
i=1 B{a⃗ | X⃗}

x : A, y : B `a⃗|X⃗ y : B
projx,y

y
(Ai{a⃗ | X⃗})n

i=1 B{a⃗ | X⃗} C{a⃗ | X⃗}
x : A `a⃗|X⃗ callcc : ((B → C) → B) → B

pl

x : A `a⃗|X⃗ M : B → C x : A `a⃗|X⃗ N : B

x : A `a⃗|X⃗ M N : C
@

x : A, y : B `a⃗|X⃗ M : C

x : A `a⃗|X⃗ λy. M : B → C
λ

x : A `a⃗,c|X⃗ M : B (Ai{a⃗ | X⃗})n
i=1

x : A `a⃗|X⃗ M : ∀c.B
∀1

i

x : A `a⃗|X⃗,Y k M : B (Ai{a⃗ | X⃗})n
i=1

x : A `a⃗|X⃗ M : ∀kY.B
∀2

i

x : A `a⃗|X⃗ M : ∀c.B a⃗, b⃗ ` e

x : A `a⃗,⃗b|X⃗ M : B{c := e}
∀2

e

x : A `a⃗|X⃗ M : ∀kY.B C{a⃗, c⃗, b1, . . . , bk | X⃗, Z⃗}
x : A `a⃗,⃗c|X⃗,Z⃗ M : B{Y k := 〈C, b1, . . . , bk〉}

∀2
e

Figure 1: Rules of second-order classical logic.

pl
x : ¬¬A `a⃗|Z⃗ callcc : (¬A → A) → A

proj
x : ¬¬A, y : ¬A `a⃗|Z⃗ x : ¬¬A

proj
x : ¬¬A, y : ¬A `a⃗|Z⃗ y : ¬A

@
x : ¬¬A, y : ¬A `a⃗|Z⃗ xy : ⊥

∀2
ex : ¬¬A, y : ¬A `a⃗|Z⃗ xy : A
λ

x : ¬¬A `a⃗|Z⃗ λy.xy : ¬A → A
@

x : ¬¬A `a⃗|Z⃗ callcc(λy.xy) : A
λ

`a⃗|Z⃗ λx. callcc(λy.xy) : ¬¬A → A

Figure 2: Derivation and proof-term for the double negation elimination for A{a⃗ | Z⃗}, using that
clearly ⊥{a⃗ | Z⃗}, ¬¬A{a⃗ | Z⃗} and ¬A{a⃗ | Z⃗}.

Example 1.4. Suppose that A{a⃗ | Z⃗}. Then in Figure 2 there is a derivation of the double
negation elimination, showing that we are indeed dealing with classical logic.

Ex. 1 — Remember the 2nd order encoding of ∨ given in Remark 1.1. Show that indeed the
usual introduction rules for ∨ are admissible from the rules of Figure 1.

Answer (Ex. 1) — See Section 3.

Ex. 2 — Consider the following proof of the excluded middle for A from Peirce’s law:
Remark that an instance of Peirce’s law for a formula C is (notC ⇒ C) ⇒ C (this
instance of Pierce’s law is called consequentia mirabilis). So, taking C = (A or notA),
in order to establish the excluded middle for A it suffices to show not(A or notA) ⇒
(A or notA). So we have to prove (A or notA) under the hypothesis not(A or notA),
call this hypothesis y. We claim that we can prove notA, i.e. let us prove a contradiction
under hypothesis A, call this hypothesis x. But from x we obtain (A or notA). So from
y we obtain the desiered contradiction.

Formalise the proof above as a derivation from the rules system of Figure 1.

Answer (Ex. 2) — See Section 3.
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2 Classical Realisability: From Tarski to Krivine
Define the function J_K : Eh × Nh → N by

J⃗a := n⃗ ` mK := m J⃗a := n⃗ ` aiK := ni J⃗a := n⃗ ` f(e1, . . . , ek)K := f(J⃗a := n⃗ ` e1K , . . . , J⃗a := n⃗ ` ekK)
where we write a⃗ := n⃗ ` e for the tuple (⃗a ` e, n⃗) ∈ Eh × Nh, and we call it a parametric
expression, n⃗ being the parameters.

2.1 Tarski semantics
Tarski’s semantics sees a formula as being exactly either true or false, once an interpretation
for its free variables is fixed. We define below the usual second order (full) Tarski semantics by
putting it in the conceptual shape that allows us to see what place the assumption above takes.

In Tarski, any formula exactly has either one counterwitness or it has none. Let us call † the
only possible counterwitness to formulas, and the only possible witness to formulas. These
represent the fact that a proof exists ( ), or that a refutation exists (†), and they are called
the truth values. We obviously want some notion of duality between them, defining how they
interact; we do that by an orthogonality relation ⊥⊥ between the set { } of witnesses and the one
{†} of counters. With this, we can define as usual the witnesses orthogonal to a set of counters
C, as in Figure 3a.

In Tarski we take the trivial interaction: there is a counter iff there is no witness, i.e. the
duality ⊥⊥⊆ { } × {†} is the trivial one ⊥⊥:= ∅. Figure 3b shows a summary.

Thus, for C ∈ ℘({†}) = {∅, {†}}, we have

{∅, { }} = ℘({ }) 3 C⊥⊥ =

{
∅ if C 6= ∅ (i.e. C = {†})
{ } if C = ∅

We thus see that the set of witnesses and of counters indeed model truth values, and (_)⊥⊥ is the
negation: “True” is encoded as both the element { } of ℘({ }) and ∅ of ℘({†}), and “False” is
encoded as both the element ∅ of ℘({ }) and {†} of ℘({†}).

Let us now define the interpretation of formulas. For the change of perspective that we will
do with Krivine’s realisability, it is better to start by focusing on the idea of a formula being
disproved, so we first define the interpretation in terms of counterwitnesses.

A second order variable Xn is interpreted as a n-predicate, i.e. a set P ⊆ Nn; now, this can
be equivalently thought of as a function P : Nn → ℘({†}), associating n ∈ Nn with the set P (n⃗)
of all the counterwitnesss to the formula X(n⃗). Since witness and counters are, in this case,
boolean truth values, P (n⃗) is the set ∅ ∈ ℘({†}) when there is no counterwitness to the formula
X(n⃗), i.e. when it is true (i.e. when we have the only witness ), and the set {†} when there is
a counterwitness (i.e. when the formula is false), the only possible one being †.

Analogously to the case of Tarski semantics for first order logic, the semantics of formulas
can be then presented as the data of functions

C : Fh0,...,hk
× Nh0 × ℘({†})N

h1 × · · · × ℘({†})N
hk → ℘({†})

W : Fh0,...,hk
× Nh0 × ℘({†})N

h1 × · · · × ℘({†})N
hk → ℘({ })

defined in Figure 3c, where
∗ : ℘({ }) × ℘({†}) → ℘({†})
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C⊥⊥ := {t ∈ W | t ⊥⊥ π for all π ∈ C}

(a) Orthogonal C⊥⊥ ⊆ W of a C ⊆ C.

W C ⊥⊥⊆ W × C ∗ : P(W) × P(C) → P(C)
Tarski { } {†} ∅ ⇒
Krivine Λ Λ∗ pole cons

(b) Witnesses, Counterwitnesses, Orthogonality and “merging”, for Tarski and Krivine’s semantics.

C(Xhi
i (e1, . . . , ehi){a⃗ := n⃗ | X⃗ := P⃗}) = Pi(J⃗a := n⃗ ` e1K , . . . , J⃗a := n⃗ ` ehiK)
C((A → B){a⃗ := n⃗ | X⃗ := P⃗}) = W(A{a⃗ := n⃗ | X⃗ := P⃗}) ∗ C(B{a⃗ := n⃗ | X⃗ := P⃗})

C(∀c.A{a⃗ := n⃗ | X⃗ := P⃗}) =
∪

m∈N
C(A{a⃗ := n⃗, c := m | X⃗ := P⃗})

C(∀mY.A{a⃗ := n⃗ | X⃗ := P⃗}) =
∪

Q:Nm→℘(C)
C(A{a⃗ := n⃗ | X⃗ := P⃗ , Y m := Q})

W(_) := C(_)⊥⊥

(c) Semantics of formulas (both Tarski and Realisability). We write A{a⃗ := n⃗ | X⃗ := P⃗ } for the
tuple (A{a⃗ | X⃗}, n1, . . . , nh0 , P1, . . . , Pk) ∈ Fh0,...,hk ×Nh0 × ℘(C)N

h1 × · · · × ℘(C)N
hk , and we call it a

parametric formula, n⃗ and P⃗ being the parameters.

Figure 3: Semantics of formulas, in a unified version for both Tarski and Krivine.

is the entailment wrt the natural encoding of “True” and False mentioned above, i.e.

∅ ∗ ∅ = ∅
∅ ∗ {†} = ∅

{ } ∗ ∅ = ∅
{ } ∗ {†} = {†}

Remark 2.1. It is important to remark that the above is literally the usual definition of Tarski
truth-semantics, we are just phrasing it with different words: given a Tarski structure M for A,
i.e. parameters (n⃗, P⃗ ) ∈ Nh0 × ℘({†})Nh1 × · · · × ℘({†})Nhk for A (i.e. an interpretation of its
free first and second order variables), W(A) is the usual Tarski truth value of A, as we have:

M ⊨ A iff W(A)n⃗|P⃗ = { } iff C(A)n⃗|P⃗ = ∅ iff C(¬A)n⃗|P⃗ = {†} iff M 6⊨ ¬A.

One can prove the following adequacy result, which in the case of Tarski is called soundness:

Theorem 2.2 (Soundness). Let x1 : A1, . . . , xm : Am `a⃗|X⃗ M : B be provable and let (n⃗, P⃗ ) be
parameters for A1, . . . , Am, B.

If ∈ W(Ai{a⃗ := n⃗ | X⃗ := P⃗}) for all i = 1, . . . , m, then ∈ W(B{a⃗ := n⃗ | X⃗ := P⃗}).

Therefore, a proof of x : A `a⃗|X⃗ B trivially defines, for each parameter (n⃗, P⃗ ), a (trivially
computable) function

∏
x∈x W(Ax{a⃗ := n⃗ | X⃗ := P⃗}) → W(B{a⃗ := n⃗ | X⃗ := P⃗}), namely: if
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the domain is non-empty – thus, it is {( , · · · , )} – then it returns ; otherwise, the domain
is empty and the function is the empty function. This is simply saying that a proof transports
evidence from the hypotheses to the conclusion, i.e., as standard, it preserves truth.

2.2 Realisability semantics
Just like Tarski semantics, also realisability is a semantics of formulas (as opposed to a semantics
of proofs/programs, that we mentioned in the previous lectures and that is more typical in proof
and/or program theory). Just like Tarski, it is obtained via the exact same construction as above.
But it takes a computational viewpoint: while Tarski defines the semantics of formulas in terms of
boolean truth valued witnesses and counterwitnesses, realisability defines a semantics of formulas
in terms of computationally relevant witnesses and counters. In particular, contrarily to Tarski,
a formula typically admits both witnesses and counters. Of course, also realisability provides a
semantics that is sound for proofs; but since it is computation oriented, it is able to distinguish
between different proofs (while in Tarski a proof has no structure, as all proofs behave the same
– see Theorem 2.2 and the lines just after it): thanks to the Curry-Howard correspondence we
know that proofs are (at least) non-trivial computational objects and realisability is compatible
with such understanding of proofs – see Theorem 2.9 and the lines just after it.

More specifically, we move from Tarski semantics’ understanding of proofs:

a proof is the trivial function {( , . . . , , )} → { } sending the truth of the hypothe-
ses to the truth of the conclusion

to the BHK understanding:

a proof is a computable function sending witnesses (there may be many) of the
hypotheses to witnesses (there may be many) of the conclusion.

In fact, realisability (in all its variants, Kleene, Kreisler’s modified, Krivine) can be precisely
seen as a formalisation of BHK. Some other versions of realisabilities, like Gödel’s Dialectica,
can be seen as refinements of it.

Actually, as mentioned above, in realisability one even takes the finer viewpoint given by the
Curry-Howard/proof-program theoretic understanding of proofs:

a proof defines of a program, in some fixed programming language, computing the
BHK function above.

That is precisely the meaning of the Adequacy Theorem 2.9 below. Krivine’s and Kreisler’s
realisability2 fully take a Curry-Howard approach to logic, so a proof will directly define a pro-
gram. In other frameworks – such as the original Kleene’s realisability – it would only define an
encoding of a program, typically a number n encoding the n-th (program for a) Turing machine.

The computational model Let us introduce the Turing-complete, untyped programming
language that we work with. Since we want proofs-terms to act on witnesses, a natural choice is
to take a “monistic” approach, in the sense that both proofs and witnesses will be the same kind
of objects. Since proof-terms are already λ + callcc-terms, we take witnesses to be the same,
and the action of the former on the latter to be the usual application of λ-terms. In order to get
a meaningful OPerational Semantics (OPS), we actually need to extend the language:

2See [Oliva and Streicher, 2008] for the relationship between the intuitionistic and classical realisability: a
slight variant of Krivine’s realisability (obtained via a CPS-formulation) corresponds to first performing a (slight
variant of the) Krivine-Streicher-Reus negative translation of formulas, and then applying intuitionistic modified
realisability to them.
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Definition 2.3. We define a langueage with following syntax:

(terms) Λcallcc 3 M ::= x | λx. M | M M | callcc | kπ

(stacks) Λ∗
callcc 3 π ::= [] | M :: π

The terms kπ are called continuations. In λx. M, we let λx only bind the x of M which are not
in the stack of a continuation. E.g., λx. x kx::[] = λy. y kx::[].

We inductively define when a term is closed: this is the usual definition, plus stating that
callcc is closed and kπ is closed whenever all the terms in π are. The closed terms of Λcallcc are
called λc-terms, and the set of those is denoted Λc. The set Λ∗

c is the set of lists of λc-terms.
The λc-terms which are continuation-free are said to be proof-like terms.Observe that all

closed proof-terms are proof-like and, more generally, all proof-terms are continuation-free. More-
over, a derivation is intuitionistic (i.e. not using Pierce’s law) iff its proof-term is callcc-free.

We denote Λc × Λ∗
c by Proc. Its elements are called processes and denoted M ⋆ π.

Definition 2.4. The OPS of Λcallcc and Λc is defined in terms of the following simplified KAM,
given by the rewriting relation � ⊆ (Λcallcc × Λ∗

callcc) × (Λcallcc × Λ∗
callcc) which is the reflexive and

transitive closure of the following one-step reduction →:

(push) M N ⋆ π → M ⋆ N :: π
(pop) λx. M ⋆ N :: π → M{x := N} ⋆ π
(save) callcc ⋆ M :: π → M ⋆ kπ :: π
(restore) kπ ⋆ M :: ρ → M ⋆ π

In particular, remark that � restricts to closed terms, i.e. if (M, π) ∈ Proc = Λc × Λ∗
c and

M ⋆ π � M′ ⋆ π′, then (M′, π′) ∈ Λc × Λ∗
c . Therefore, we have a reduction � ⊆ Proc × Proc.

Remark 2.5. One could, of course, add a new program primitive symbol for any axiom that
we like; but in order for such an assignment to be interesting it should be non-ad-hoc, namely
it should at least have a computationally meaningful semantics. This is precisely what one does
with callcc for Peirce’s law. Finding interesting programming primitives that allow us to realise
interesting axioms is, in a sense, the whole point of realisability.

Example 2.6. A typical run in this KAM is shown by that of the proof term for the double
negation elimination found in Figure 2:

λx. callcc(λy. x y) ⋆ M :: π
� callcc(λy. M y) ⋆ π
� λy. M y ⋆ kπ :: π
� M kπ ⋆ π
� M ⋆ kπ :: π

The realisability relation and its adequacy The construction of the realisability semantics
is exactly as the Tarski’s, but for the fact that we make the set of possible witnesses and counters
non-trivial. Let us call them W and C, respectively. Now all the construction is the same by
replacing { } by W and {†} by Π, and by choosing the opportune operation ∗ and duality ⊥⊥.

We take
W := Λc.

Remembering their OPS and that we need a function ∗ : ℘(W) × ℘(C) → ℘(C) it is natural to
take

C := W∗ = Λ∗
c
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and ∗ the extension of the cons operation on sets:

W ∗ C := {M :: π | M ∈ W and π ∈ C}.

Finally, we need a duality relation ⊥⊥⊆ W×C. We define it via the OPS of λc-terms: fix a �-
downward closed ⊥⊥⊆ Proc, called a pole (which is thus a parameter of all the construction; also,
remember that �-downward closed means that, for all p, q ∈ Proc, we have: p � q ∈⊥⊥ ⇒ p ∈⊥⊥).
We set

M ⊥⊥ π whenever M ⋆ π ∈⊥⊥ .

The orthogonal C⊥⊥ ⊆ W of C ⊆ C is defined as before in Figure 3a.
Now the definition of

C : Fh0,...,hk
× Nh0 × ℘(Πc)N

h1 × · · · × ℘(Πc)N
hk → ℘(Πc)

and
W : Fh0,...,hk

× Nh0 × ℘(Πc)N
h1 × · · · × ℘(Πc)N

hk → ℘(Λc)

is given in Figure 3c, exactly as before.

Example 2.7. Fix a pole ⊥⊥. Let us show that, for all formulas A, B and π ∈ C(A), we have
kπ ∈ W(A → B). In particular, kπ ∈ W(¬A).

We have to show that for M ∈ W(A), ρ ∈ C(B), we have kπ ⋆ M :: ρ ∈ ⊥⊥. This is immediate
by (restore).

Ex. 3 — Show that the proof-term of Example 1.4 witnesses the conclusion of its proof. I.e.,
for all A and pole ⊥⊥, we have: λx. callcc(λy. x y) ∈ W(¬¬A → A).

Answer (Ex. 3) — See Section 3.

Remark 2.8. Remark that, setting U → V := {M ∈ Λc | M N ∈ V for all N ∈ U}, we have

W(A → B) = W(A) → W(B).

Realisability witnesses thus enjoy the BHK understanding of an implication, in the sense that a
witness for A → B is operationally indistinguishable from a program of “type” W(A) → W(B).

The situation of the previous exercise 3 is not a coincidence, as the following adequacy
Theorem shows. It is analogous to the one in Tarski’s case, but now it makes formal the BHK
understanding of proofs. See e.g. [Krivine, 2003] for its proof.

Theorem 2.9 (Adequacy). Let x1 : A1, . . . , xm : Am `a⃗|X⃗ M : B be provable, let (n⃗, P⃗ ) be
parameters for A1, . . . , Am, B and let N1, . . . , Nm be λc-terms. Let ⊥⊥ be a pole. We have:

If
N1 ∈ W(A1{a⃗ := n⃗ | X⃗ := P⃗}) , . . . , Nm ∈ W(Am{a⃗ := n⃗ | X⃗ := P⃗})

then
M{x⃗ := N⃗} ∈ W(B{a⃗ := n⃗ | X⃗ := P⃗}).

Therefore, x : A `a⃗|X⃗ M : B defines a program λx⃗. M in λc-calculus which, for each parameter
(n⃗, P⃗ ) and each pole ⊥⊥, computes the function

{Nx}x∈x ∈
∏
x∈x

W(Ax{a⃗ := n⃗ | X⃗ := P⃗}) 7→ M{x := N} ∈ W(B{a⃗ := n⃗ | X⃗ := P⃗})
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Observe how this precisely formalises the BHK “definition”: a proof transports evidences from
the hypotheses to the conclusion.

In particular, for the case of a derivation `a⃗|X⃗ M : B under no hypotheses, the above means
that for each pole ⊥⊥ we have:

M ∈ W(B{a⃗ := n⃗ | X⃗ := P⃗}).

Remember that Example 2.7 shows that continuations allow us to “cheat” and witness the
negation of virtually all formulas. Whence the “proof-like clause” in the following:

Definition 2.10. A witness M of A which is a proof-like term is called a ⊥⊥-realiser of A, written
M ⊩⊥⊥ A. A proof-like term M which ⊥⊥-realises A for all pole ⊥⊥ is said to be a realiser of A
(sometimes a “universal” realiser), written M `̀ A.

Realisers of A capture then the computational content of A. Remark that, from the Adequacy
result above, we have in particular that `a⃗|X⃗ M : B ⇒ M `̀ B, as expected. For example,
λx. callcc(λy. x y) ⊩ ¬¬A → A.

Ex. 4 — Consider the derivation from Exercise 2, where for simplicity we take A{ | } (i.e. no
first or second order free variables). Without using the Adequacy Theorem but just following
the definitions, show that its proof-term realises indeed A ∨ ¬A.

Answer (Ex. 4) — See Section 3.

* Ex. 5 — Set M ≈n N iff for all N1, . . . , Nn ∈ Λc and π ∈ Πc we have M ⋆ N1 :: · · · :: Nn :: π � p
whenever N ⋆ N1 :: · · · :: Nn :: π → p.
Prove that, for a proof-like term M, we have: M `̀ ∀X0. X → X iff M ≈1 I.

Answer (Ex. 5) — See Section 3.

Beyond proofs, toward axioms In these notes, we have defined the realisability semantics
by formalising and refining the BHK understanding of proofs, we compared it with Tarski’s one,
and we stated the Adequacy Theorem, which says that realisability is a sound semantics (wrt
provability) of formulas in terms of programs. We have roughly followed the first 5 sections
of [Krivine, 2003].

But actually, the main point of realisability is to start from here in order to go beyond proofs,
and to realise (i.e. find computational witnesses for) formulas that do not have a proof but that
we may want to take as axioms! In fact, this is what we with for Peirce’s law, yielding realisability
for classical logic through callcc. In the case of Krivine’s realisability, this has been brought to
spectacular levels by realising the axioms of ZFC, for instance.

So let us conclude by simply summarising the two main aspects of Krivine’s realisability:

• A proof/program theoretic pov: it is a technique to realise axioms, i.e. to witness/justify
them from a computational point of view. From this perspective, it belongs to the fam-
ily of functional interpretations, and in the particular framework of Krivine’s realisability,
we can realise highly non-constructive axioms. For instance, one can realise CH and,
recently, Krivine realised AC. The challenge here is to add interesting and natural pro-
gramming instructions to the computational model, such that with them one can realise
non-constructive non-trivial axioms via interesting programs. The ideal goal would be,
therefore, to obtain a concrete realiser (so, a λ-term plus other instructions), with an in-
teresting computational behaviour that we are able to precisely describe, or maybe even

9



to characterize the computational behaviour of any realiser of a given axiom3. However,
in many cases, one is only able to show by model theoretic ways (see below) that a realiser
exists4.

• A model theoretic pov: Under a mild hypothesis on the pole, if we fix the interpretation of
all first and second order variables, and then we collect all formulas whose parametrisation
(with the parameters from the fixed interpretation) admits a realiser (i.e. a proof-like term
which witnesses the formula regardless of the choice of the pole), one can see that we
get a (deductively closed) non-contradictory theory. If we are first order, this means by
completeness that the theory has a Tarski-model. If we are in second-order, we can take
Henkin-like models. They are called realisability models (and remark that the adequacy
Theorem entails that realisability models are sound wrt provability). An important part of
the active research in classical realisability is devoted to the study of such models, especially
in the case of ZF, and particularly in relation with the Axiom of Choice [Krivine, 2021], or
weaker variants of it [Fontanella and Geoffroy, 2020] (as well as other kind of set theoretical
axioms).

In both cases, Krivine’s realisability appears to be very much related to set theory’s forcing5.
On the one hand, in some cases the techniques in use are a syntactic/program oriented counter-
part of Forcing (see [Miquel, 2011, Krivine, 2011], based on the draft [Krivine, 2008]6). On the
other hand, forcing models of ZF are realisability models of ZF, and realisability is potentially
stronger than forcing.

Let us conclude by mentioning two other important directions of research in realisability:
there are categorical formulations of the various variants of it [van Oosten, 2008] (not only Kriv-
ine’s version [Streicher, 2013]), and more algebraic formulations in terms of so-called implicative
algebras [Miquel, 2020]. These are both important and central topics of research in realisability,
and they are actually strictly related to each other.

Finally, keep in mind that while here we only talked about Krivine’s realisability for classical
logic (started after the ’00), realisability is half a century older than that! In particular, it was
invented by Kleene [Kleene, 1945] and much work in realisability happened (and still happens) in
an intuitionistic setting; see also [van Oosten, 2002] for a historical presentation before Krivine’s
one existed.
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3 Solutions to the exercises

Answer (Ex. 1) — The usual introduction rules for ∨ are admissible from Figure 1 in the
following form:

Γ ` M : L

Γ ` λlr. lM : L ∨ R
∨l

Γ ` M : R

Γ ` λlr. rM : L ∨ R
∨r

In order to show this, we have to show that, given a derivation q of Γ ` M : L, we have a derivation
q∨

l of Γ ` λlr.lM : L ∨ R, and similarly for the other. This derivation is defined in Figure 4, the
other is similar.

Answer (Ex. 2) — The derivation is:

` callcc : (¬(A ∨ ¬A) → (A ∨ ¬A)) → (A ∨ ¬A)pl
p

` λyvh. h(λx. y(λzw.zx)) : ¬(A ∨ ¬A) → (A ∨ ¬A)
` callcc(λyvh. h(λx. y(λzw.zx))) : A ∨ ¬A

@

where p is the derivation given in Figure 5.

Answer (Ex. 3) — We have to show that λx. callcc(λy. x y) ⋆ M :: π ∈⊥⊥ for all M ∈ W(¬¬A)
and π ∈ C(A). From Example 2.6 it suffices to show that M ⋆ kπ :: π ∈⊥⊥. But Example 2.7 tells
us that kπ ∈ W(¬A). So the desired result follows from M ∈ W(¬A → ⊥) and π ∈ Πc = C(⊥).
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projΓ, l : L → X, r : R → X ` l : L → X

qWeak
(l:L→X,r:R→X)

Γ, l : L → X, r : R → X ` M : L
@Γ, l : L → X, r : R → X ` lM : X

λ, λ
Γ ` λlr. lM : (L → X) → (R → X) → X

∀0
Γ ` λlr. lM : L ∨ R

Figure 4: Definition of the derivation q∨
l of Γ ` λlr.lM : L ∨ R, given q of Γ ` M : L. For fresh

variables l, r in a derivation q, the derivation qWeak
(l:H1,r:H2) is defined as q but where, in each of its

rules, we add at the end of the context the two new variable declarations l : H1, r : H2. Remark
that the need of weakening q is the only reason why the rules for ∨ are, strictly speaking, only
admissible and not derivable. But they are “morally” derivable.

proj
y : ¬(A ∨ ¬A), x : A ` y : ¬(A ∨ ¬A)

proj
y : ¬(A ∨ ¬A), x : A ` x : A

∨l
y : ¬(A ∨ ¬A), x : A ` λzw.zx : A ∨ ¬A

@
y : ¬(A ∨ ¬A), x : A ` y(λzw.zx) : ⊥

λ
y : ¬(A ∨ ¬A) ` λx. y(λzw.zx) : ¬A

∨r
y : ¬(A ∨ ¬A) ` λvh. h(λx. y(λzw.zx)) : A ∨ ¬A

λ` λyvh. h(λx. y(λzw.zx)) : ¬(A ∨ ¬A) → (A ∨ ¬A)

Figure 5: Derivation p from the solution of Exercise 1. We use (in dashed lines) the admissible
rules of Exercise 1, so this actually stands for the derivation which is obtained by replacing the
subderivations above the admissible rules by their respective derivations (this just decodes ∨ and
puts the appropriate variable declarations in the context).

Answer (Ex. 4) — We have to show that

callcc(λyvh. h(λx. y(λzw. zx))) ⊩ A ∨ ¬A.

Remark that the proof-term is closed. We have to show that, for each pole ⊥⊥ and each P ⊆ Πc,
it witnesses ((A → X) → (¬A → X) → X){ | X := P}. That is, that for all M ∈ W((A →
X){ | X := P}), N ∈ W((¬A → X){ | X := P}) and π ∈ C(X{ | X := P}), we show that
callcc(λyvh. h(λx. y(λzw. zx))) ⋆ M :: N :: π ∈⊥⊥. In order to show it, let us run the process in the
KAM:

callcc(λyvh. h(λx. y(λzw. zx))) ⋆ M :: N :: π
� callcc ⋆ λyvh. h(λx. y(λzw. zx))) :: M :: N :: π
� λyvh. h(λx. y(λzw. zx))) ⋆ kM::N::π :: M :: N :: π
� N(λx. kM::N::π(λzw. zx)) ⋆ π
� N ⋆ λx. kM::N::π(λzw. zx) :: π

Since the pole is closed by anti-reduction, it suffices to show that this last process is in it.
But by hypothesis N ∈ W((¬A → X){ | X := P}), so it suffices for that to show that
λx. kM::N::π(λzw. zx) ∈ W(¬A). In order to show this, let H ∈ W(A) and ρ ∈ C(⊥) = Πc,
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and we show that λx. kM::N::π(λzw. zx) ⋆ H :: ρ ∈⊥⊥. For this, let us run the process in the KAM:

λx. kM::N::π(λzw. zx) ⋆ H :: ρ
� kM::N::π(λzw. zH) ⋆ ρ
� kM::N::π ⋆ λzw. zH :: ρ
� λzw. zH ⋆ M :: N :: π
� MH ⋆ π
� M ⋆ H :: π

Now, by hypothesis we have M ∈ W((A → X){ | X := P}) and also H ∈ W(A), so indeed
M ⋆ H :: π ∈⊥⊥ by definition of the witnesses of an implication.

Answer (Ex. 5) — Suppose that M ≈1 I. Fix a pole ⊥⊥ and P ⊆ Πc. We have to show that
M ∈ W((X → X){X := P}), i.e. M⋆N :: π ∈⊥⊥ for all N ∈ W(X{X := P}) and π ∈ C(X{X := P}).
But by hypothesis we have M ⋆ N :: π � N :: π, and the latter belongs to ⊥⊥ by construction. Since
⊥⊥ is �-downward closed, we are done.
For the converse, suppose that M `̀ ∀X0. X → X. For N ∈ Λc, π ∈ Πc, we have to show that
M ⋆ N :: π � N ⋆ π. But the set ⊥⊥:= {p ∈ Proc | p � N ⋆ π} is trivially �-downward closed, so
we can take it as a pole: the hypothesis says then that M ∈ W((X → X){X := P}) (for the W
relative to that pole) for all P ⊆ Πc. In particular, choosing P := {π}, we have that M ⊥⊥ S :: ρ
for all ρ ∈ C(X{X := {π}}) = {π} and S ∈ W(X{X := {π}}) = {π}⊥⊥. Now, we remark that
N ⊥⊥ π, because N ⋆ π ∈⊥⊥ by definition of ⊥⊥. Therefore M ⊥⊥ N :: π and, by definition of ⊥⊥, we
have the desired M ⋆ N :: π � N ⋆ π.
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