Lecture 2
From Computability to Program Theory, Part 2
The A-calculus

Davide Barbarossa

Contents

1 Introducing the A-terms 1

2 The M-calculus as a programming language 3
2.1 Introduction to Denotational Semantics (in R) 3
2.2 Introduction to Operational semantics (full S-reduction) 5
2.3 Some basic and fun(ctional) programming oL 9

3 Appendix 12

4 Solution to Exercises 18

1 Introducing the \-terms

Fix now and for all a countable set Var of variables. Consider the set of finite directed graphs M,
which we call nets', such that: the internal nodes of M (i.e. those with at least one child) are in
{@,), o}; the leaves of M (i.e. those with no children) are in Var; all @-nodes of M have exactly
one left child, one right child and one parent; M has exactly one node, called its conclusion
r(M), with the property that all its parents (if any) are e-nodes. The set FV (M) := {z € Var |
x is a leaf of M} is called the set of free variables of M. For x a variable, we denote by = the
net whose only node (thus, its conclusion) is the leaf zz. There is nothing special in the use of
nets as above: they are just a handy framework in order to perform the following operations:

e An operation @ which, given two nets M, N, returns the net, denoted M N, obtained from
the disjoint union of M, N by adding a conclusion node @ and two edges r(N) < @ — r(M).

e For each variable y, an operation Ay which, given a net M returns the net, denoted by
Ay.M, obtained from M by adding a new conclusion node A, an edge A — r(M), and by
replacing all the leaves y of M (if any) by e and adding an edge e — X for each of those.

Remark 1.1. Given a net M, define M{x := y} to be the net obtained from M by replacing all
occurrences of x in M (necessarily leaves in M) with y. Then M{x := y} is still a net and:

(FV(M) —{z})Ufy} if x€FV(M)

FV(M{x = y}) = {FV(M) otherwise.

1This is neither a standard terminology nor a standard notion.

Remark that (Az.M){z := y} = dz.(M{x := y}) if z # x,y, but if z € {x,y} the equality may
fail?. Moreover, immediately from the definition of nets, we have e.g. \x.x = \y.y. In general:

e M =My (M{x:=y}) whenevery ¢ FV(M). ()

The fact that all subnets of a net which are A-abstractions can be rewritten in this way, is called
a-conversion. It says that (typically during an induction), we can always choose the variable
popped out from the deconstruction of a A-abstraction as “fresh”, i.e.: for each finite collection
of nets, we can assume that the abstracted variable does not occur (free) in any of them. In our
particular framework of nets as above, a-conversion holds for free.

Definition 1.2. A A-term-with-context-variables is a pair of a finite set of variables x, called
context variables, and a net M, and which is defined inductively by’ :

Xy FM xFM xFN
——) —
x FAy.M

(XE&)X =

—(profs) (y¢x)

If x M, we say that the net M admits context variables (or that x is adequate for M).

The idea is that a A-term-with-context-variables x + M represents a program with input points
of R bound to the context variables x, and output the point of R represented by M. The rules
above represent then the kind of manipulations of functions from Theorem 4.9 of Lecture 1.

',
Note that a A-term-with-context-variables can have different derivations, e.g. : 3 X and
z.Z
}_
IE’)\ Y The next Lemma 1.3, Proposition 1.4 and Lemma 1.6 are proven in the Section 3.
z.Z

Lemma 1.3. The following two rules are admissible, resp. called o-renaming and Weakening:

(0:x>

IN
o

S

[a)

(%)
<
=,

S

3
=

|

[

[

[

[

[

[

[

[

[

‘
—
Q
=

Proposition 1.4. The nets admitting context variables (possibly an empty list) are exactly the
ones obtained by the following inductive rules. They are called A-terms, and we call A their set.

Mo=x|Ax.M|MM (A)
A A-term which admits the empty list of context variables is said to be closed.

The idea is that A (resp. in the sense of R, of rule for A-term-with-context-variables and of
A-abstraction) encodes a function in a sense external to the respective framework under consid-
eration as a function in a sense internal to it. In A-calculus, those functions are “intentional”,
and we are going to see that the framework is a programming language.

Example 1.5. I:= Ax.x € A is closed. Of course, it still admits many other context variables,
x,y,z Fz
x,y FI
A-terms by using the rules (A).

e.g. . Other notable closed \-terms are in Figure 1. Prove that those nets are indeed

2For a counterexample take, in both cases, z # y and M := z. Indeed:

(Av.a){z =y}= (Q) {z=y}= Qﬂ Ao (a{a = y}) and Qy.2){e =y} = l;é Q Ay-(a{z =y}).

3The comma “,” in the contexts denotes umon of sets; the condition at the left of a rule 1n parenthesis is the

condition requlred in order for the rule to be applicable; the sign at the right of a rule is simply its name.

Lemma 1.6. The free variables of A-terms satisfy the following recursive equations:
FV(x)={x}, FVMN)=FVMUFV(N), FV(Ax.M)=FV(M) —{x}.
Moreover, FV (M) is contained in any context variable list for M, and FV (M) - M.

Remark 1.7. One usually defines A-terms in a more syntactic way, and then a-conversion would
need to be properly defined as an equivalence, and work in the quotient. Here, (o) holds already
for nets. In practice, the two approaches are the same, though: every time that we perform an
induction, in either approach we need to handle this situation by hand by invoking (c)!

2 The M-calculus as a programming language

2.1 Introduction to Denotational Semantics (in R)

We extracted A-terms precisely from the crucial operations in R, so we expect them to be
naturally related with elements of R. Indeed they are, and this is how:

Definition 2.1. We define, by induction on x F VM, its R-interpretation [x - M] : R — R as:

[x Fx]:=projx: RE— R, ie [xi=alx] = a
[x F Ay.P]: R* = R, [x:=aFAyP] = A[z:=ay:=()FP]) fy¢x
[x HPQ]: R*E— R, [x:=a FPQ] := Q([x:=a FP], [x:=atFQ])

where we wrote [x :=a FM] for [x FM] (a). Remark that for a closed +M, we have [M] € R.

Remark 2.2. We should justify that the definition above makes sense, in that it defines a unique
function. This is both intuitively clear and technically non-trivial! We detail it in Section 3.

It is evident from the definition that we defined some sort of homomorphism wrt A, @, or
some sort of functor. We will not precise this, because it would require notions from combinatory
algebras or category theory, but the intuition is correct.

Remark 2.3. Our interpretation map sees [x F M] as a function on RE — R. Another common
way, essentially equivalent, is to define the interpretation directly of a term, as a family [M] :
p € RV [[M]]p € R, indezed by an environment p, which chooses the value of the variables all
at once for all terms. The approach taken here is slightly more natural if one thinks of it as a
special case of the denotational semantics for typed terms in CCCs or in closed multicategories.

We know from the previous lecture that equation

funo X =idg_, g (B)

holds in R. It is interesting to look at its consequence on the interpretation of terms. Namely,
given y,x = M with x ¢ y, and y - N, let us look at [[X F (Ax.M) NH. The A-term-with-context-
variables of this shape are exactly those where the composition funo A appears. It is immediate
(see Section 3) to see that the above interpretation is the function which gives, for each a € RE,
the element

[[XZZQ ’—()\X-M)N]] = ﬂz:zg,x:: HX::Q }—N]] I—M]] €R

That is, it is the application of [[X =a,x M]] :R— Rto [[X =a b N]] € R. In other words, it
is the substitution of the interpretation of N for x in the interpretation of M.
The crucial observation is now that the substitution above can be actually internalised in the

language, i.e. it is itself the interpretation of a A-term-with-context-variables:

Definition 2.4. Given M,N € A, x € Var, define the term M{x := N} € A by induction®:
x{x:=N}:=N z{x:=N}:=z PQ){x:=N} := (P{x:=N})(Q{x :=N})
(Az.P){x:=N} := Az.(P{x:=N}), ifz¢ FV(N)U{x}.

In terms of nets, the substitution operation is very natural®: M{x := N} coincides with the
net obtained from M by substituting all (if any) its x-leaves with N.

Theorem 2.5. For all y,x =M with x ¢ ¥, and y BN, we have:

[[z F (\x. M) N]] = [[X - M{x = N}]] RY - R. (181)
Proof. See Section 3. O

The one above is a fundamental property, because, as we are going to see in the next section,
it gives an operational meaning to A-term-with-context-variabless as actual programs. It is so
important that it makes sense to only consider the “spaces” X (in any kind of sense) that are
equipped with a map [_] : AT — X that satisfy the equation ([3]). We call the data (X,[_])
a (denotational) model of the A-calculus. In fact, whenever we dispose, in the very general sense
of category theory, of a retraction (\, fun) on a space X (like we have for X := R), then one can
canonically define [_] following the same definition that we gave, and this will automatically
satisfy ([5]). The interpretation map in R defined above gives one particular model, called the
Plotkin-Scott-Engeler graph model®.

We defined A-terms precisely with the hope that they would be related, in some sense, the
RE sets. Indeed, in analogy with Theorem 3.11 of the notes of Lecture 1, A-terms only define a
very special kind of functions:

Proposition 2.6. The interpretation of any closed A-term-with-context-variables is RE.

Definition 2.7. We say that a continuous f : R — R is A-computable iff A\(f) C N is RE.

Ex. 1 — Remember the functions Y and fun from Lecture 1. Find a closed term Y such that
[F Y] = A(Y o fun). Conclude that the function Y o fun: R — R is A-computable.

Answer (Ex. 1) — See section 4. O

Proposition 2.8. The interpretation [x FM] : R — R of a A-term-with-context-variables is
A-computable.

4In the A-abstraction case below, we can always invoke («) in order to chose a z with those properties. Indeed,
M, N, x are fixed and z pops out by decomposing M, so we are free to choose it as it pleases us.

5The reason why one prefers the inductive definition above to the geometric one is because, due to the inductive
nature of A-terms, in practice the great majority of the proofs are done by induction and then one needs the
inductive characterisation above.

6There are several similar but different variants of this construction.

At this point, one could develop all the relevant notions of computability theory in this
setting. Most notably, one can exhibit a closed term U that plays the same role of a universal
Turing machine, in the sense that {Q([U],{n}) | n € N} is an enumeration of all the RE sets.

Remark 2.9. Note how the denotation semantics in R that we sketched here provides thus a first
sense in which we can understand the \-calculus as a programming language: 1) the functions
(in R) that it defines are not any function, but only A-computable ones (as Turing Machines only
define computable functions on N), and 2) it is universal for RE sets (as Turing machines are
universal for computable functions on N).

Remark 2.10 (Denotational Semantics). From a PL perspective, the definition of an interpreta-
tion map is said to give a denotational semantics (DNS, for short) for programs (in this case, the
A-terms-with-context-variables). This can be seen as a way of specifying which entities programs
(which are just pieces of syntax) can be thought of manipulating, by providing a way of interpret-
ing programs as mathematical entities that compose and that can be built inductively as them.
Thus, answering to the question “which mathematical entity does a given program implement?’”
One constraint typically required is for those entities to abstract as much as possible from any
implementation detail’. More about DNS in Remark 2.20.

Remark 2.11. The notion of Scott-continuity and its properties that we have mentioned for R,
are actually crucial aspects of the majority of the DNS’s of the A-calculus.

2.2 Introduction to Operational semantics (full -reduction)

We first encountered () ; we then transformed it into the crucial defining property of deno-
tational semantics (X,[] : A¥ — X), holding for the interpretation of terms-with-context-
variables: equation ([f]). Now, the interpretation map of any denotational model induces an
equivalence on A” that equates, at least, all the terms-with-context-variables y F (Ax.M) N with
y = M{x:=N}, if y - N. We are going now to make this into an equivalence (and even more: a
dynamics) on actual terms (without context variables). This even simplifies the handling of vari-
ables and shows that, actually, this equivalence is very natural. But, most importantly, it gives
another way, even simpler, of understanding A-calculus as a programming language: this time
the programs will be the A-terms (without context variables), and their behaviour as programs
is given in a more syntactic way.

So, let us forget about context variables, and only focus on A-terms. Then ([3]) suggests to
consider an equivalence on A-terms, called -equivalence:

(Ax.M)N =g M{x := N}. (=5)
Actually, it is more natural to orient the equation, called S-reduction:
(Ax.M)N —3 M{x := N} (—5)

This orientation has a clear meaning in terms of a dynamics of function computation as formal
substitution. We can then retrieve (=) as a quotient with respect to the reflexive, symmetric
and transitive closure of (—3).

"This also justifies the expression “semantics”: it clarifies how can we assemble those pieces of syntax in order
to program within the language some entity that we have in mind; therefore, sometimes people take a Fregean-
like philosophical perspective and summarise this by saying that the DNS is a way of providing a “meaning”
to programs.

8In the same way as in, say, linear algebra, we are interested in the abstract manipulations of vectors, not in
their implementation as “actual arrows”.

Remark 2.12. We could have even started the whole topic by (—3) with the idea of function
computation as formal substitution, then obtain (=p), and finally introduce ([S]). Here we did
the opposite: from ([8]), to (=3) to (—p). This is only a matter of taste.

Notice that for the quotient wrt (=) to make sense, we need to say how are we going to
extend this relation to terms which are not of the particular shape written in (—3). Algebraically
speaking, we need to extend the equivalence to a congruence’. Sometimes, one wants to restrict
(=p) (or (—3)) to terms under certain constraints (and then still extend it to a congruence). In
all cases, the obtained congruences are called A-theories.

Remark 2.13 (Operational Semantics). From a PL perspective, the definition of a dynamics
on programs is said to give an operational semantics (OPS, for short) for them (in this case,
A-terms). This can be seen as a way of specifying how the programs (which are just pieces of
syntazx) concretely behave as computational objects, this is typically done in a machine-inspired
way. In some cases (like the A-calculus, or more generally purely functional languages), the OPS
can be described as a reduction relation on programs (like (—p3)). The induced congruence from
the dynamics (like (=3)) is said to give a operational equivalence'’. A A-theory is, thus, the
choice of an operational equivalence on A-terms. More about OPS in Remark 2.20.

Now, there are several different notions of congruence, which in turn go with several restric-
tions on (=4), giving rise to many different A-theories'!. Some of them make particular sense
from a programming language perspective. So, similarly to how there are different DNS’s, there
are different OPS too, i.e. different possible choices of defining what it means for a term to run.

For A-calculus, a natural one (and vaguely close to real programming languages) is obtained by
understanding A as being the instruction set for an abstract machine, which implements what is
called a weak head-reduction execution mode. This approach is also taken in classical realisability
(see Lecture 5). The congruence that one uses for defining this OPS can be also defined by what
are called head-contexts. There are other OPS’s that are closer to real implementations, such as
the so-called “call-by-value” or the more refined “call-by-need”, etc. Those often seem to have
similar definitions, but turn out to define very different A-theories. Here however, we will stay
much simpler and take the easiest OPS: this is definitely far from real implementations, but still it
is crucial for theoretical studies about the semantics of A-calculus, and it is the prototypical one:

Definition 2.14. The full f-reduction —g C A x A is defined by the following inductive rules:

M—gN M—)gM/ N—)gN’
()\X.M)N—w M{X = N} Ax.M —5 Ax.N MN —g M'N MN — 5 MN

Let — 3 be the reflexive and transitive closure of — 5. Let =g be the symmetric and transitive
closure of —p (i.e. its induced equivalence, or equivalently the equivalence induced by —g).

Terms of shape (Ax.M)N are called redexes. A term M is normal if there is no possible
—g-reduction from M (i.e., if there is no redex). We say that a normal N s a normal form
of M if M —3 N, and in that case we say that M has a terminating — g-reduction (on N).

Ex. 2 — Find a normal form form, if any, of the following terms: Ix, (Axy.x)y, (Axy.y)y, (Axy.z) MN,
(Axyz.(x2z)(yz)) zxy.

Answer (Ex. 2) — Simply follow the definition. O

91.e., an equivalence compatible with some algebraic structure.
10In practice, operational equivalence and operational semantics are also used as synonyms.
1A continuum of them!

The abstract rewriting system (A, —g) is clearly not deterministic, because there is a term
with at least two different reductions, for instance: x(Iy) g+ (Ix)(Iy) —s Ixy. Remark that a
necessary condition for a term in order to reduce to two different terms is to have two redexes,
but the condition is not sufficient: for example, I(II) has two different redexes, but it only
reduces to one term: I(II) —g II. This is because we defined —4 as a relation (i.e. a pair).
Looking at the different reduction paths would correspond to taking into account the different
derivations of Definition 2.14, but we will not do this.

Remark 2.15. There is a term with no normal form. For instance, the Q of Exercise j (cfr.
Figure 1). There is also a term which has a normal form but not all its reductions terminate. For
instance, (Ax.I)Q. Finally, notice that being =g does not imply that one reduces to the other. For
instance, (A\x.I)Q =g II, because both —g-reduce to I, but (Ax.I)Q /4 II and II /45 (Ax.I)Q.

In fact, a fundamental result due to Church and Rosser says that to be =g is exactly the
same as —»g-reducing to a common term. One can immediately show that this fact is actually
equivalent to another natural notion, which is a weak but powerful form of determinism, called
confluence. It is in this form that one usually states it:

Theorem 2.16 (Church, Rosser). The abstract rewriting system (A, —g) is confluent.

Ex. 3 — Prove that, as immediate corollary to the confluence above, any A-term has at most
one normal form (that is, in any S-equivalence class there is at most one normal term).

Answer (Ex. 3) — See Section 4. O

Ex. 4 — Let 6 := Ax.xx and Q:=§¢ (cfr. Figure 1). Show that: @ — Q

Let Ay := Ax.M(xx), for x ¢ FV(M). For f a variable, does Af A¢ have a normal form?
Show that AI AI —» AI AI.

Let Y := Af. A¢A¢ (cfr. Figure 1). Show that YM =5 M(YM).

Let & := Axy.y(xxy) and © := & ®. Show that OM — M (OM).

Let ¥ := Axy.y(xx) and x := W W¥. Show that xM — My and x - Ax.x x.

Are you able to keep reducing x? Does x have a normal form?

Let Wy := Axy.M(xxy) and, for £ a variable, E, := A\f.W;W;z. Show that Z,M =5 M(E,M).
Let A := O(Axy.(Az.z(xy))). Show that, for x # z, Az — Ax.x(Az).

Are you able to keep reducing Az? Does Az have a normal form?

Answer (Ex. 4) — Carefully follow the definition of the reduction. O

Definition 2.17. A term F such that FM =g M(FM) for all term M, is called a fixed point
combinator.

Note that Exercise 4 shows that Y and © are fixed point combinators'?, as well as Zy, as soon
as N is closed.

Remark 2.18. If you were able to successfully do Exercise 2 and Exercise 4, then you understood
substitution, reduction, and a-conversion: congratulations!

Remark 2.19. The notion of Scott-continuity that we have seen in R is actually reflected in the
OPS’s of the A-calculus itself: for instance, A-terms are Scott-continuous in a very precise sense.
Many more aspects of domain theory crucially hold for the \-calculus at the level of its OPS’s.

12Y is called Curry’s combinator, and © Turing’s.

Remark 2.20 (On Denotational and Operational Semantics). We give below some ways in which
DNS and OPS (and their relationship) can be understood:

Conceptually: As the study of the mathematical entities that look like like programs (of the
particular language under study)'®. Sometimes, those entities are functions, as one would
expect. For example, it is the case for our model R. However, interpreting terms as func-
tions is typically subtle: For example, in A-calculus, we know that in order to be able to
define an interpretation in a set X, its function space XX needs to retract onto it (i.e. we
need () to hold). This cuts out many mainstream mathematical “functional structures”,
and one usually deals with function spaces based on domain theory (like we did for R). But
terms can, for example, be equally well interpreted as relations, and these kind of interpre-
tations are also very natural (especially when considering Linear Logic and its differential
aspects). In fact, the general framework is given by reflexive objects living in Cartesian
closed categories (CCCs, for short), with terms being endomorphisms on it. Living in a
CCC actually gives rise to a stronger notion of denotational semantics, in that it not only
validates ([3]) but also [n], making the semantics extensional'*. It still makes sense to
study non-extensional semantics (only ([B]) holds), but the research community devoted
most of the study to the case of CCC’s. We will give a quick overview of it in Lesson 3.

Mathematically: One usually fizes an equivalence between programs (typically induced by a
OPS sound wrt the DNS). Then the DNS is a way of defining invariants with respect
to the equivalence under study. This is analogous to, say, homotopy/homology groups
in algebraic topology: not because it has to do with groups or geometry, but because it
associates each program with an abstract entity which is compatible with (read: invariant
with respect to) the equivalence under study'®. Moreover, the OPS usually gives rise to an
oriented relation —g (giving rise to a dynamical system). Therefore, in particular, DNS
defines invariants of the dynamics, in the same way that physics defines conservation laws
of dynamical systems. Observe that different DNS’s give different invariants; in physics,
Noéther’s Theorem says that a certain class of symmetries define invariants. In A-calculus,
it is the class of reflexive objects in CCC’s that defines invariants'c.

In practice: DNS and OPS are often used as a way of telling two programs not equivalent wrt
the respective equivalences, by showing that the associated invariants (their interpretation)
is different. If the DNS and the OPS interact well with each other (i.e. the equivalences
they induce are related in some way'”), then the DNS may be useful as a way of abstracting
away details about programs that are not relevant for the situation under study, in order to
move to a framework in which more suited tools are available. Often, the idea is to study
whether some operational properties (for instance, the fact of a program performing sequen-
tial operations on a machine), can be described in a purely mathematical way, abstracting
away from a machine'®. And, vice-versa, if some abstract property has a operational (or
machine dependent) counterpart'®.

131n analogy to how basic linear algebra studies mathematical entities which look like our physical space.

14 As it equates programs whenever they behave the same as functions.

15For us, =g (Definition 2.14), or refinements of it; in algebraic topology, homeomorphism or refinements of it.
16 At least for the extensional case, one can also reasonably say that this is the class of all the invariants.

17 Asking at least for a property called “adequacy”, and hoping for another called “full abstraction”.

18See work on continuity, stability and sequentiality.

19See e.g. the parallel-or mentioned in Remark 2.24

2.3 Some basic and fun(ctional) programming

Remember that, for us, S-equivalent programs are operationally equivalent. A normal form plays
the role of a result (a completely defined output).

Remark that we do not have any built-in data structure, nor type system of any kind, so the
user has to implement them all from scratch.

We will only implement Booleans and natural numbers data types, but we give no type system
for now. However, one could do data structures, computable analysis, and in general implement
all computable functions, since, as we will mention, A is Turing-complete.

Remark that we already have a notion of “function implemented by a term”, and it is the
one given by denotational semantics in, say, R. Here we take another, standard, notion of imple-
mentation of a function which is not based on the structure of the program (as in denotational
semantics), but on its operational behaviour: we say that a function is implemented by a term
if the term behaves, in the sense of the OPS, like the function on all inputs.

Definition 2.21. If we think of a datatype as a set A together with some (total) operations
f: A" — A, then in order to implement it we need to choose an (injective) encoding™.7: A — A
of its elements and, for each f, choose a closed " f7 € A satisfying the following specification:
for all @ € A™, we have®® Tf17q" =g " f(@)". We say in this case that f is implementable in
the A-calculus (wrt the chosen implementation of the datatype).

Remark that, since we really working in the quotient in the definition above, the specification
above equivalently gives " f M =4 " f(&@)" whenever M; =5 "a;” (for all 7).

Ex. 5 — The usual encoding of Booleans, due to Church, uses projection terms in order to
encode the two boolean values:

TRUE := AXy.X FALSE := Axy.y

Implement the boolean functions not, and, or, zor.

Answer (Ex. 5) — See Section 4. O
* Ex. 6 — The usual encoding of natural numbers, due to Church, is in unary base, using
iterators:

mn = Aex. £ (£ 5)
Thus, for example, "07 = FALSE, "17 = Afx.fx, 757 = Afx. f(£(£(£f(£x)))). Implement the
successor function, addition, test to zero (return true if the argument is zero, false otherwise).

Answer (Ex. 6) — See section 4. O

One can also implement the (truncated®!) predecessor function, with the following specifica-

"m—1" ifn>0
tion: PRED ' n’' =g f

0" if n=0.
one way to do it is to use the data-structure of pairs: starting from the pair (0, 1), recursively
add 1 to both components until the second one is n, then return the first one. For lack of space,

we will not show how to do it here, but we will use it to implement other interesting functions.

But this is not straightforward (with Church encoding):

20Remark that we are using here the 8-equality, but one may want to be more subtle and use other A-theories.
21Be careful, because while the truncated predecessor satisfies, as usual, PRED SUCC ™1 =g "n'foralln €N, it
only satisfies SUCCPRED "n"' =g "n"if n > 0. For n = 0 we have SUCCPRED 0" =5 "1

* Ex. 7 — Supposing to have a term PRED € A that implements the predecessor function as
above, implement the (truncated) subtraction of the first argument minus the second, with the
™ —m? ifn—m>0
0" ifn—m <0.
less than or equal test (returns true if the first argument is smaller than or equal to the second
argument, and false otherwise), implement the equality test (returns true if the two arguments
are two equal numbers, false otherwise) and implement the strictly less than test (returns true
if the first argument is strictly smaller than the second argument, and false otherwise).

following specification: SUBTR " n'"m™ =g Moreover, implement the

Answer (Ex. 7) — See section 4. O

Let us now see how to implement primitive recursion. This has to do with fix-points.

Theorem 2.22. Let h: Nx Nx N" = N and g : N* = N. Let aux? : NV — NV defined
by aux] (f)(0,m) := g(m) and auxj (f)(n+ 1,m) := h(f(n,m),n,).

Then auxy admits a fized-point, namely the function F : N*™' — N inductively defined by
F(0,m) := g(m) and F(n+ 1,m) := h(F(n,ni),n,m).

Moreover, if g,h are implemented by closed terms "g7,"h € A, then F is implemented by
the closed term YA € A, where A :== Af nii. ISZEROn ("¢g"'@) ("h™ (f (PREDn) @) (PREDD)).

Proof. That F' is a fixed-point of aux] is immediate. Let us now see why YA implements it.
For this, we have to show that YATn"m™ =5 "F(n,m)" for all (n,m) € N**1. We show it by
induction on n € N. We have:

YATRTTmT =5 A(YA)Tn7TmT
=g ISZERO ™ n ' ("g7™m™) ("R ((YA) (PRED ™n")"m™) (PRED 1) "m™)
=5 ISZERO "n7 Tg(m)7 (TRT((YA)™n —17Tm ™) Tn — 177m ")
Now if n = 0, we continue the equalities as:
=p "g(m) " =5 "F(0,m)".
If n > 1, we continue the equalities as:
=5 Th((YA)Tn—17 '_773—‘) T — 17T
:,B I—h—l I_F(n_ l’m)j I—n_ 1—| l_m—l
=z "h(F(n—1,m),n—1,m)"
=g "F(n,m)"
O
The Theorem above says that implementing a primitive recursion is not harder than imple-
menting its building blocks. For instance, let us implement the factorial: (_)!: N - N, 0l :=1
and (n+ 1)l :=nl(n+1).
This can be written as a primitive recursive function via g := 1 € Nand h: Nx N — N,
h(a,b) ;== a(b+1). Those are clearly implementable by "17 and "h" := Aab. MULT a (SUCCD), re-

spectively. Therefore, the theorem ensures that Y (Afn. 1ISZEROn"17 ("h™ (f (PREDn)) (PREDD)))
implements (_)!. Developing "h™ we can also obtain the slightly more readable:

Y (Afn.1SZEROD ™17 (MULT (f (PRED 1)) n))

where we have also used the fact that succ (PRED™n7) =g "nif n > 1.

10

One can do much more than just the previous encodings and implementations. For instance,
one can encode data-structures such as pairs, lists, trees, but also rational numbers, computable
real numbers, etc.

For arithmetic??, we have basically seen that we can implement all primitive recursive func-
tions. Actually, one can also implement minimisation (but we are not going to prove it), and
therefore get all partial recursive functions:

Theorem 2.23. Taking, say, Church encoding of natural numbers, then the partial functions
N — N which are implementable*® in \-calculus are exvactly the Turing-computable ones (i.e. the
partial recursive functions).

Thus we say that the (untyped) A-calculus is a Turing-complete programming language and
supports Church-Turing’s thesis, which says that we found the satisfying mathematical formal-
isation of the intuitive notion of computable partial function N — N, namely one which is pro-
grammable in the \-calculus wrt some®* implementation of the datatype N (or, equivalently, on
a Turing machine wrt to some implementation of the datatype N). Of course we can actually
use any encoding we like, as long as we have translations with Church’s one: this is just like in
Turing Machines (or any other model of computation), where we first need to fix an encoding of
natural numbers on the alphabet of the machine. Remark that, while Turing-machines offer an
imperative programming paradigm, A-calculus offers a functional paradigm.

Remark 2.24. Beware that, as always, being Turing-complete does not mean that we can im-
plement all algorithms for computing a computable function, but only that for any computable
function we can implement at least one algorithm computing it! More specifically, deep results
in A-calculus®® show that the only kind of computation that A implements is necessarily “se-
quential™®® (this can, of course, be made rigorous). For ezample, one cannot program in A the
parallel-or algorithm: this is the one which computes the boolean or of two inputs by running
them in parallel and inspecting first the first which stops (if any). This corresponds to a partial
or function, which of course we can implement (we already did: OR), since A is Turing-complete;
but we can implement it in a sequential way, not in the parallel way described above!

* Ex. 8 — Remember the Euclidean division: there are functions ¢,7 : N x Nyg — N such
that, for all m € N, n € Nyg, we have m = n - g(m,n) + r(m,n) and r(m,n) < n.

1. Prove that the following inductive characterisation of ¢, r holds:

r(0,n) =0 q(0,n) =0
r(m+1,n)=r(m,n)+1 if rimn)+1<n <qg(m+1,n)=qg(m,n) if r(m,n)+1<n
rim+1,n)=0 if rtmyn)+1=n rim+1,n)=q(m,n)+1 if r(mn)+1=n

2. Implement ¢ and r in A-calculus.

22Remark that this is enough because, we can encode “anything” as natural numbers. This is the exact same
reason why when working with Turing-machines one can restrict its attention to numerical functions encoded via,
say, a binary alphabet.

230ne should precisely define what does it mean to implement a partial function on a datatype (remark that our
previous definition only considers total operations). The problem is that of understanding how to characterise the
terms whose run produces no observable output whatsoever (these terms are sometimes also called “meaningless”).
This is typically done via the notion of unsolvable term, which is related with another A-theory “=gT”, and one
works then in the quotient A/g.

24Here we have seen the most natural one, Church’s.

25Those results are non-trivial and require the developing some theory of “approximation” of A-terms: either
on the style of the one mentioned at the beginning of Lecture 1 based on Scott continuity, or by a completely
different approach based on the notion of differentiation and coming from Linear Logic.

26In a very loose sense, think of, say, one-tape deterministic Turing-machines.

11

Answer (Ex. 8) — See Section 4. [Hint: for 1), you need to prove that i) if q,r are the
Euclidean division then they satisfy the equations above, and it) if g, are defined by the equations
above, then they are total and compute the Euclidean division.] O

3 Appendix

Proofs of Lemma 1.3, Proposition 1.4 and Lemma 1.6

First, we need a couple of lemmas about simultaneous substitution. Remember the definition:

Definition 3.1. Given a bijection o with domain x, we define the simultaneous o-renaming
M{x :=o0(x)} of a A-term M by indution as:

x{x:=0(x)} = o(x) Hx=o@)}=yify¢x
PO{x:=0x)} = (P{x:=0x)})(Q{x:=0(x)})
(AzP){x:=0(x)} =X z.P{zx:=0(x)}) ifz ¢ xUo(x).

Lemma 3.2. Leto:x— z and pu: y—ou be bijections. If;ﬂX =0 and xNw =0, then:

M{x :=o(x),y = u(y)} =MWy = py) {z = o(x)}.

Proof. Induction on M.

Case y: then the LHS is u(y) and the RHS is u(y){x := o(x)} = y because yNnx = 0.

Case x: then the LHS is o(x) and the RHS is x{y := pu(y) Hz := 0(x)} = x{x 1= 0(x)} = 0(x)
because y N x = 0.

Case PQ: immediate by TH (used twice).

Case Av.P: Wlog by () we have v ¢ x Uy Uz Uuw. Therefore, the LHS is Av.(P{x :=
o(x),y = p(y)})- The RHS is (\WP){x = o(x)Hy = n(y)} = Ov.(P{x == c(@}P){y =
w(y)} = Av.(P{x := o(x) Hy := u(y)}), where in the first equality we used v ¢ x Uz and in the

second one v ¢ yUu. Now the result follows from the IH. O

Lemma 3.3. Fory ¢ x andy ¢ FV(P)UzUx, we have

y.(P{z:=o(x),y :=y'}) = AWy P){x:=0(x)}.

Proof.
A .Plx:=0x),y=y}) = N.P{y:=y'Hzx:=0()}) byLemma32asy ¢x
= (W Py=yP{x=0x)} asy ¢zUx
= (A\yP{x:=o0(x)} asy ¢ FV(P).

Now we can finally give the claimed proofs.

Proof of Lemma 1.3(c-renaming). Induction on x F M.

Case " FX: then g

12

*********** o ~----------0
xFP xHQ z FP{x:=0(x)} z Fo{x:=o(x)} :
Case ———: then where the o-renamings
x FPQ z b (PO){x=0o(x)}
are given by the TH.
Case Ly P ithy ¢ x: Let y ¢ FV(P) Uz Ux. Now we have:
gl—)\y.P’WI y ¢ x: y zUZX. W W ve:
x,y FP ,
7777777777777777 H
z,y FP{x:=0(x),y:=y'} i; =yl

z - (QAyP){x:=o(x)}
The (o + [y — y'])-renaming is given by the TH and (o + [y — y’]) is a bijection because y ¢ x
and y' ¢ z. The Ay'-rule gives indeed \y’.(P{x := 0(x),y :=y'}) = (\y.P){x := o(x)} thanks to
Lemma 3.3. O

For the proof of the weakening, we need a remark which immediately follows from (o)-
renaming, but which is crucial:

X,z FP
x F AzP
z ¢ x Uy, where y is any set of variables fized independently from z and P.
Indeed, if it were not the case, we could take a z' ¢ FV(P)Ux Uy and consider the bijection
X,z P
x,z' FP{z:=2}

/
z })\z’ with z' ¢ FV(P)UxUy. We would then work with P{z := 2z'}

Remark 3.4. When we have (with z ¢ x), we can always Wlog assume that actually

idy + [z = 2] : x,z — x,2/. By renaming, we have (z — 2'), and so we

x,z' FP{z:=
x F Az.P

instead of P and z' instead of z. Notice that the result of applying the rule \z' is indeed \z.P,
because z' ¢ FV (P).

have

Now we can continue with our proofs.

Proof of Lemma 1.3(Weakening). Induction on x + M.
Case — then

x Fx X,y Fx
xFP x FQ
" oxrq . mybP ' xyrQ
Case =~ X7 2. then = y Y with the weakenings given by ITH.
x FPQ %y FPQ
FP
Case % with z ¢ x: Wlog by Remark 3.4, z ¢ {y} Ux. Now we have
x F Az
_xzhP
x,z,y FP \
X,y FAzP z
The rule W is given by the IH. The rule Az is applicable because z ¢ {y} U x. O

Proof of Proposition 1./. That a A-term-with-context-variables is a A-term is immediate, by in-
duction on the derivation of any of its context variables. For the converse, we show by induction
on M € A, that there is x such that x - M.

Case y: immediate.

Case PQ: By inductive hypotheses we have x P and y F Q. Then we have:

13

where the dashed rules are Weakenings, which are admissible from Lemma 1.3(2).

Case Ax.P: By inductive hypothesis we have y - P. Now we have two subcases?®”:
y FP
subcase x € y: then mAx
subcase x ¢ y: then yEP
V,x FP
y FAx.P Ax

O

Proof of Lemma 1.6. The equations for F'V are immediate by definition of F'V on nets (and in
fact they hold for nets, in general).

That F'V (M) is contained in any context variable list for M is immediate by induction on M € A.

Let us now show, by induction on M € A, that FV(M) + M. This is analogue to the previous
proof just above.

Case x: immediate.

Case PQ: We have the following derivation, where the top ones are given by the IH and the
last rule uses the equations for F'V shown above.

FV(P) P FV(@Q) FQ

FV(P),FV(Q) FP FV(P),FV(Q) -Q
FV(pPQ) -PQ ¢

Case \x.P: By inductive hypothesis we have F'V(P) I P. Now we have two subcases®:

FV(P) FP B
FVP) — (o} e 20 FV(AxP) = FV(P) = {x}.

subcase x € FV(P): then
subcase x ¢ FV(P): then

FV(P),x FP
FV(P) - Ax.P
and FV(Ax.P) = FV(P) — {x} = FV(P). O

2"Remark that we cannot use («) in order to pick x ¢ ¥, since y is not fixed independently from x. In fact, it is
the choice of x to be popped out that determines the actual P, and y is determined precisely from P (via the IH).
28Remark that, again, here we cannot use («) in order to pick x ¢ FV(P).

Ax

14

The interpretation is well-defined

Definition 2.1 is not really precise, for two reasons:

1) We have to check that the definition of the function does not depend on the chosen
derivation. Otherwise the A-abstraction is not well-defined, since we can pop any variable from
it, and the resulting derivations are, strictly speaking, different. However, they only differ on the
renaming of that variable, which in the definition only plays the role of placeholder. We have
the impression that it is not a major issue: this is correct, but it requires some care.

2) We use A(...), which applies to functions R — R. But we apply it on a function RY — R.

Let us solve issue 2), as there is nothing serious going on and it is just a matter of abbrevia-
tions: writing A(f) for f : RY — R, is sugar for)\(f), where f:a € R f(a) € R, where a € RY
is trivially defined by ay := a.

Now let us turn to issue 1):

We can solve it in two ways: either we stipulate that, a priori, Definition 2.1 does not define
one function, but instead a set of functions (yet to be precised). Once this properly defined, we
show that this set is actually a singleton, so we obtain exactly one function indeed. Or, we first
stipulate that we are not interpreting A-term-with-context-variables, but we are interpreting
the very derivations of a A-term-with-context-variables (so, the trees whose root is a A-term-
with-context-variables). Then, we show that the interpretation is actually invariant with respect
to derivations of the same A-term-with-context-variables and we can therefore define, with no
worries, the interpretation of one A-term-with-context-variables as the interpretation of any of
its derivations.

The mathematics of the two approaches is essentially the same. We choose to follow the
second approach because more standard. Here it is:

Read Definition 2.1 as defining the interpretation of derivations, i.e.:

[proj] = projx, a€ R a, €R [Q(m,n")] == a€ R:— Q([n] (a),[7'](a)) € R
HWH = a€RE=A(r]x=a,y:=())) €ER

Notice that this is well-defined.

Remark that, reading the proofs of Lemma 1.3, Proposition 1.4 and Lemma 1.6 given in
Section 3, we see that they actually define derivations witnessing the respective terms-with-
context-variables. Here we only need the derivations defined in Lemma 1.3(1).

Definition 3.5. The proof of Lemma 1.53(1) lifts any bijection o : x = z to a relation, which we
call o-renaming (still denoted o), between derivations of the terms-with-context-variables x and
those with-context-variables z.

Moreover, for all 7 : (x b M) and all o with domain x, one has wop iff p: (z F M{x:=0(x)}).

Proof that the definition makes sense and that it satisfies the claimed characterisation. The def-
inition of o-renaming is explicitly given below, by induction on 7. At the same time, in the same
induction, we also prove that, for all o, o-renaming satisfies the claimed characterisation.

Case : then for all o,

x Fx

mop iff (by def) p= iff p:(zFx{x:=o0(x)}).

Fo(x)

15

m:(xFP) m:(xFQ)
x FPQ

Case : then for all o,
wop iff (by def) p=Q(p1,p2) with mop; and mop;

(zFPlxi=0(x)}) pei(zFQ{x=o0x)})
z F (PQ){x =0o(x)}

iff p:(zF PQO{x =0(x)}).

iff (by 1) p="

" FP
Case w, with y ¢ x: then for all o,
x FAy.P
wop iff (by def) p=Ay'.p’ withy' ¢ FV(P)UzUx
and 'op’
where 6 := o0 + [y — ']
, pi(zy FP{xi=o0x),y =y} ,
by IH = ! thy ¢ FV (P
iff (by IH) p == N Plx = 0@y =7]) Ay’ withy' ¢ FV(P)UzUx
iff p:(z - (yP){x:=0(x)})
The only non-immediate step is the last “iff”, which hold thanks to Lemma 3.3. O

One can see that won’ for some o, iff one is obtained from the other by performing a renaming
in any number of subderivations (including the whole derivation).

Remark 3.6. From the def/prop one sees that m, 7' : (x = M) iff widy «’'. This relation is called
a-equivalence of derivations, and we denote it by m =, @'. The only difference with o-renaming
is that =, corresponds to renaming any proper subderviation of a derivation.

Remark that a bijection o : x — y lifts to a bijection o : R — RY, defined by or(a), := ag-1(y).
Its inverse is given by o' (b), = bo(a)-

Lemma 3.7. 1. Let o :x = z be a bijection. If nap, then [p] = [r]oog!, i.e. [p] (z:=b) =
[7] (% := box))-
2. If m =4 7 then [n] = [«'].

Proof. (1). Induction on .

C Thenp=———and |[——— | = by = |[—— ||

ase x Fx enp z Fo(x) an [[z =) F J(x)]] o (@) l[x =box) x]]

m:(xFP) m:(xFQ)
x FPQ

Case

: Immediate by the TH (used twice).

™ (xy FP) iy FPxi=o)y =y

Case x F Ay.P z FAY.(P{x:=0(x),y:=y'}) with y' ¢

FV(P) Uz Uz, for some p’ such that n'cp’, where ¢ := o + [y — y’]. Then [p] (z := b) =

AP (z:= by = (_))) and [7] (x := bo(x)) = A[7'] (X := by(x), ¥ := (_))). Therefore, we are
done if we show that

[Pl (z:=0by = () =[] (x:=bow),y:=()): R— R

But this holds, because for ¢ € R, the IH on 7'ap’ gives [p'] (z := b,y = ¢) = [7] (z :=
bo(x),¥ := C), because 65" : R#Y — R®Y sends (z := b,y 1= ¢) to (x := by (x), ¥ := ©).
(2). Immediate from (1) as (idy) 5" = idg=. O

, with y ¢ x: thenp:p

16

Therefore, it makes sense to take the official definition of “[x F M]” in Definition 2.1 as:

Definition 3.8. The interpretation [x = M] of a A-term-with-context-variables x M is the inter-
pretation [7: (x F M)] of any of its derivations. It is immediate to see that, with this definition,
the equations in Definition 2.1 provide a characterization of the interpretation of terms-with-
context-variables.

Lemma 3.9. Letx - M. Ify ¢ x, then [x,y F M] = [x F M]oprojz”’, ie. [x,y FM] (x:=a,y =
b) =[x FM(x:= a)

Proof. Straightforward induction on x + M. O

Remark 3.10. The reason why in ordinary A-calculus we can forget about actual derivations,
in the sense that those of the same term with contextual variables are all a-equivalent, is due
to the fact that the derivations are “syntax directed”, i.e. the kind of rule that we can apply
only depends on the shape of the A-term in the conclusion of the derivation. For other \-calculi,
especially for those that formalise non-trivial notions of proof*’, this may not be the case (there
may be two different proofs of the same judgment which differ not only in logically meaningless
aspects such as renaming of variables, but really logically different, i.e. using different rules but
deriving the same judgment). In such cases one has to deal with derivations and not just with
the conclusion judgment, while still taking them modulo a-equivalence (once properly defined),
since those are syntactic non-logical/non-computational differences (in practice, one manipulates
derivations before a-equivalence, and makes renaming on the fly whenever needed). Then one
has to make sure all the constructions are compatible with a-equivalence (especially the cut-
equivalence, which in our case would be (=g3); for this, one typically needs to use e.g. a weakening
rule; however, one cannot only use the fact that if a judgment is provable then its weakening is,
but needs to define the weakening of a derivation modulo a-equivalence).

Proof of Theorem 2.5
We first need the following crucial:

Lemma 3.11 (Substitution Lemma). For ally,x WM,y FN, x ¢ y and b € RY,

[[X::Q I—M{x::N}]] :[[X::Q,x:: Hx:zb I—N]] }—M]].

Proof. By induction on y,x F M.
Case ——:
y,x b x

then the LHS is [[y =bF N]],andthe RHS is proj%’X (X =b,x:= [[y =bF N]]) = [[y =bF N]].

Case m:
then the LHS is proj% (Z = Q) = by and the RHS is proj%’X (X =b, x:= [[y =bF N]]) = by.

v, x FP y,x FQ

Case = : Then the LHS is
y,x FPQ

<

[[Z =0 F (PQ){x:= N}]] = @ =b FP{x:= N}]] , [[X =bFQ{x:= N}]])
= @ ,X:ZHX::QI—NHFPH7ﬂxz:Q,X::[[y::Q|—NHI—Q]D

- [[z::b,x::[[z::bl—N]]l—PQ]] R

29But not the ones that we will see in Lecture 3, which rely on the ordinary A-calculus.

=l

<

17

which is the RHS.
yv,x,z P

y,x - Az.P

z ¢ FV(N)) the LHS is

Case with z ¢ y U {x}: Wlog by Remark 3.4, z ¢ y U {x} U FV(N). Then (as

[[X =bF Az.(P{x := N})]] = AM|y=2bz:=(_) FP{x:=N}||)
= M|y=bz:=(),x:= X::bFNH FP]])
= [[X =b,x:= [[Z =bFN l—)\z.P]]

which is the RHS. The only non-immediate step is the second equality, which follows because the
two functions under the A are the same function: for ¢ € R, the IH is applicable to y, x,z - P be-

cause x ¢ yU{z}, and gives [[X =b,z:=ckFP{x:= N}]] = Hz =b,z:=c,x:= HX =0k N]] - P]].

Now it we easily get:

Theorem 3.12. Lety,x FM withx ¢ y, and y = N. Then:

[[X F ()\X.M)NH = [[X FM{x:= N}]] . RYS R

QH'[X::b,x:: Hx::b FN]] FM]] (3D
Proof. Developing the definitions we immediately see that
[[X::b l—()\x.M)N]] = @ [[X::b l—)\x.MH , [[1:29 FN)
- a A([L =bx:= () }—M]D My =0 }—N]])
= [y=bx=[y=tru] ru by (9)
Therefore, we are done by the Lemma 3.2. O

4 Solution to Exercises

Answer (Ex. 1) — By following Proposition 3.10 of Lecture 1, one can see that [f - Af A¢] =
Y o fun, where Ay := (Ax.f(xx))(Ax.f(xx)). Setting Y := A.A;A; we have thus [Y] =
A(Y o fun), and the result follows from Proposition 2.6. O

Answer (Ex. 3) — Suppose that M € A has two normal forms N;,No € A. That is, Ny, Ny are
normal and we have N; «- M — Ny. By confluence there is H € A such that Ny — H « Ny. But since
Ny, Ny are normal, the only —»-reduction from them can be a 0-step reduction, so N; = H = Ns.

O

Answer (Ex. 5) — For not, we look for a term NOT with the following specification:

NOT TRUE =g FALSE
NOT FALSE =3 TRUE

18

One easy choice is:
NOT := Ab. b FALSE TRUE.

Remark that, even if it doesn’t precisely fit in the above definition, we can implement the if-
then-else, in the sense that we look for a term IFTE with the following specification:

IFTE TRUEMN =g M
IFTEFALSEMN =5 N

This is left as an exercise to the reader.
For and, we are back to the definition given in the text, and we look for a term AND with the
following specification, given by the truth table of the and:

AND TRUE TRUE =g TRUE

AND TRUE FALSE =g FALSE
AND FALSE TRUE =g FALSE
AND FALSE FALSE =g FALSE

One possible choice, whose idea consists in inspecting the first argument, is
AND := Amn.m (n TRUE FALSE) FALSE.
One can also inspect the second argument (which corresponds to the fact that AND is total and

symmetric), yielding
AND’ := Amn.n (m TRUE FALSE) FALSE.

There is also another smarter implementation::

AND”' = Amn.mnm.
Check that it works.
Similarly, for or we have
OR := Amn.m TRUE (n TRUE FALSE) or also OR’ := Amn.n TRUE (m TRUE FALSE) or also OR” := Amn.mmn.

For zor, we have
XOR := Amn.m (n FALSE TRUE) (n TRUE FALSE) or also XOR' := Amn.n (m FALSE TRUE) (m TRUE FALSE).

Of course one can also combine AND, OR, NOT, XOR in order to define them in terms of each other.

O

Answer (Ex. 6) —

sucC := Anfx. f(nfx)
Another possibility is succ := Anfx.nf (f x).
ADD := Anmfx.nf (mfx)
Another possibility is ADD := Anmfx.mf (nfx).
ISZERO := An.n (_. FALSE) TRUE
It is immediate to prove all the above satisfy the required specifications. O

19

Answer (Ex. 7) —
SUBTR := Anm.mPREDn

LEQ := Anm. ISZERO (SUBTRn.m)
EQUALS := Anm. AND (LEQnm) (LEQmn)

LESS := Anm. AND (LEQnm) (NOT (EQUALSnm))

It is immediate to prove all the above satisfy the required specifications. O

Answer (Ex. 8) — 1. We show i) and ii) of the hint to the exercise.

i

)

Suppose that ¢, r are the Euclidean division functions (in particular, they are total on N x Nyq),
and let us show that they satisfy the equations of the exercise.

Interestingly, we do not need any induction®?, and a simple reasoning by cases on m > 0 suffices.
Case 0: We have 0 = n - ¢(0,n) + r(0,n). Since all those numbers are non-negative, it must be
r(0,n) =0 and n - ¢(0,n) = 0. Since n # 0, the latter entails ¢(0,n) = 0.

Case m + 1: Let us consider m+1=n-g(m+1,n) +r(m+1,n) and m = n-q(m,n) +r(m,n),
with r(m + 1,n), r(m,n) < n. Substituting the second equation in the first, we get

n-(¢g(m,n) —qglm+1,n)) +r(m,n)+1=r(m-+1,n). (%)

Remark that since r(m,n) < n, then r(m,n) + 1 < n. So we have two subcases:

Subcase r(m,n)+1 < n. Then r(m,n)+1 = r(m,n)+1 modn. Therefore, since also r(m+1,n) <
n, taking the modn of (x) we get r(m + 1,n) = r(m,n) + 1, which is one desired equality.
Substituting it back in (), we also get n - (¢(m,n) — ¢(m + 1,n)) = 0 and, since n # 0, we have
g(m + 1,n) = q(m,n), which is another desired equality.

Subcase r(m,n) + 1 = n. Substituting this in the (x), we have n - (¢(m,n) —g(m +1,n) +1) =
r(m + 1,n). But r(m,n) < n, so r(m,n) = r(m,n) modn, and by taking modn of the latter
equation we get r(m + 1,n) = 0, which is yet another desired equality. Substituting it back in
(¥) and using r(m + 1,n) + 1 = n, we get n - (g¢(m,n) —g(m + 1,n) + 1) = 0 and, since n # 0,
we have g(m + 1,n) = g(m,n) + 1, which is the last desired equality.

ii)

Suppose that ¢, r are defined by the equations of the exercise and let us show that they compute
the Euclidean division (in particular, they are toatl on N x N5g).

We first show that they are total, and then®' that they compute the Euclidean division.

For the totality (on N x N5q), we see that, by definition, ¢ is total iff r is, so it suffices to show
that 7 is total. We see from the definition of r that the only possibility for r(m,n) not to be
defined is if m = m’+1 and either (m’, n) is not defined, or it is and r(m’,n)+1 > n. Therefore,
the totality of r follows from ruling out the above possibility, as in the following claim: For all
m >0 and n > 0, r(m,n) is defined and r(m,n) +1 < n.

We show the claim by induction on m: Case 0: r(0,n) is defined to be 0 and 1 < n. Case
m+1: By IH, r(m,n) is defined and r(m,n)+1 < n. So r(m+1) is defined and it is either 0, if
r(m,n)+1=mn,or r(m,n)+1, if r(m,n)+1 < n. In the first case we have r(m+1,n)+1=1<n.
In the second case we have r(m+1,n)+1=r(m,n)+2<n+1,sor(m—+1,n)+1<n.

30This is because we already suppose that they are total.
31We could do both steps together, but for the sake of clarity let us distinguish them.

20

Now the we know that they are total, let us show that ¢,r compute the Euclidean division, i.e.
they satisfy m = n - g(m,n) + r(m,n) and r(m,n) < n.

Remark that from the claim above, we already get that r(m,n) < n. So we only prove the
remaining equality. We do this by induction on m:

Case 0: we need to show that 0 =n -0+ 0, which is trivial.

Case m + 1: we need to show that m +1 = n-q(m + 1,n) + 7(m + 1,n). By IH we have
m = n-q(m,n) + r(m,n). Now, following the definition of ¢,r, we have the following two
subcases (we know that ¢, r are total, so those are the only possibilities):

Subcase r(m,n) + 1 < n: then using the IH and the definition of ¢,r, we have the desired:
m+1=n-qg(mn)+r(mmn)+1l=n-qglm+1,n)+r(m+1,n).

Subcase r(m,n)+1 = n: then using r(m,n)+1 = n, the IH and the definition of ¢, r we have the
desired: m+1=n-g(m,n)+r(m,n)+1=n-qm,n)+n=n-(¢g(m,n)+1) =n-g(m+1,n) =
n-qgim+1,n)+r(m-+1,n).

2. We need to put ¢,r in the shape of recursive functions with g, h as in Theorem 2.22. It is
immediate to see that we can take g, = g4 = 0. However, remark that, even if ¢,r are total, a
naif inspection of their definition could let us define h,, hy by cases as in the equations in the
exercise, e.g. hy(a,b) =a+1ifa+1 < band =0if a+1 = b. But those are not total, and
so we cannot apply Theorem 2.22. However this is not an issue®?: we can make h,., h, total by
defining them arbitrarily in the case a + 1 > b, since this case will never be taken in ¢, r. In fact,
it is immediate to see that the following total h,, hq satisfy: r(m +1,n) = h,(r(m,n), m,n) and
a(m +1,m) = hy(g(m,n),m, n).

a+1 ifa+1<b a ifr(e,b) +1<b
hr(a,d,b) :==<0 ifa+1=5b he(a,e,b) :==<a+1 ifr(c,b)+1=5b
42 ifa+1>b 42 if r(c,b) +1>b

We see that in order to implement h, (and, then, ¢) we need to implement r first.

This is immediate to do by first implementing h, and, then, writing the term which implement
r using Theorem 2.22. But actually, since h;, does not use its second argument, we can equally
well consider its slightly simpler variant h,(a,b), and its implementation is:

H, := Aab. IFTE (LESS (SUCCa)Db)
(succa)
(IFTE (EQUALS (SUCC a) b)
I—O—I
I—42—l
)

Now as in Theorem 2.22 we have that the Euclidean division reminder function r is implemented
by the (slightly clearer) term (it is actually =g to the one obtained with h,(a,d,b)):

REMINDER := Y (Armn. ISZEROm" 07 (H, (r (PREDm)n)n)).

Let us now conclude with the quotient: we can immediately implement h, as:

32 Actually, in order to represent ¢, in A-calculus there is not even need to make them total: as we discussed
in Theorem 2.23, A-calculus implements all partial recursive functions! But since we did not discuss how to deal
with partiality (see next footnote), and we proved Theorem 2.22 only for total functions, we make them total in
this exercise. Remark that the fact that, here, we could make them total by arbitrarily defining them, is a special
property of g,r. But in general, partial functions are needed.

21

H, := Aacb.IFTE (LESS (SUCC (REMINDER c b)) b)
a
(IFTE (EQUALS (SUCC (REMINDER c b)) b)
(succa)
742—\

)

From this, Theorem 2.22 says that the Euclidean division quotient function is implemented by:
QUOTIENT :=Y (Aqmn.ISZEROm" 0" (H, (q (PREDm) n) (REMINDER (PREDm) n)n)).

Remark that since h, and hy are defined arbitrarily if @ +1 > b and ¢+ 1 > b, in that part of
Hy, H, we could have actually put any A-term: since we know that ¢, r are total, we would still
have obtained an implementation of them??.

Finally, remark how the above implementations are absolutely disastrous from the point of view
of complexity. Of course one can optimise the code, but here we were just concerned with the

fact that an implementation exists.
O

33In particular, we could have put Q instead of "427. This correspond to keeping h., hg not defined in that case,
and it is indeed how one deals with partiality...

22

o {—
el—>4&—>
B—><—>

AN
/

SIS
I I
./ N I N

P P L7 N L7 N
VN VR

Figure 1: Some (closed) A-terms. From left to right (numbers and booleans are in Church en-
coding):

First line, I, TRUE, FALSE, 1, ifte; Second line, 3, xor; Third line, Y, Q.

Of course programming with these objects would be impracticable. Therefore the actual repre-
sentation of A-terms that we have chosen (in terms of such nets) has to be seen as machine code.
Writing them as terms in the grammar of Definition 1.4 — in addition to being, strictly speaking,
their definition proving that a certain net is indeed a A-term — is a sort of assembly language for
it: it is clearer to humans and it abbreviates the machine code, while still becoming impracti-
cable for non trivial programming. Starting from that, one could put types, take built-in data
structures (or just encode them) and so on, so to have a relatively manageable PL. Taking this
idea seriously brings to theoretical languages of fundamental importance, like MLLTs, F, PCF,
but also, after due non-trivial adaptations, to some important real life PL, such as Haskell, Agda,
OCaml, Rocq, Lean etc. Note that chosing an actual machine implementation of A-calculus is
not obvious, and lot of research is done for that (see nominal sets, high order abstract syntax, de
brujin indices, etc). The choice that we took here is suggestive, but it is only one of the many,
and anyway A-terms are not actually implemented as those kind of nets in real life PL: what
matters is their inductive nature, not the implementation that allows it.

23

	Introducing the -terms
	The -calculus as a programming language
	Introduction to Denotational Semantics (in ¶)
	Introduction to Operational semantics (full -reduction)
	Some basic and fun(ctional) programming

	Appendix
	Solution to Exercises

