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1 Scott-topology
Let ↑: R→ P(R) defined by ↑a := {b ∈ R | b ⊇ a} (the principal filter at a).

Ex. 1 — Show that we have:
(i) R = ↑∅
(ii) a ∈↑a for all a ∈ R

(iii) ↑ is non-increasing wrt. inclusion
(iv) ↑(a ∪ b) =↑a∩ ↑b.

Answer (Ex. 1) — See Section 4.

Let B := Im(↑∣∣
Rfin

) = {↑e ⊆ R | e ⊆fin N} ⊆ P(R).

In other words, each E ∈ B is uniquely determined by some finite e ⊆fin N, in the sense that
for all b ∈ R, one has b ∈ E iff b ⊇ e.

Proposition 1.1. B is a base of a topology on R.

Proof. By standard undergraduate topology, we have to show that (i) : B covers R and (ii) : for
all A, B ∈ B and c ∈ A ∩B, there is C ∈ B such that c ∈ C ⊆ A ∩B. This is left as:

Ex. 2 — Complete the proof of Proposition 1.1.

Answer (Ex. 2) — See Section 4.
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Remark 1.2. By definition, the open sets of the topology induced by B are exactly the sets O ⊆ R
of shape O =

⋃
e∈I ↑e, for some I ⊆ Rfin. In particular, if e ∈ Rfin, then ↑e is open in R.

This topology is sometimes called positive information topology (cfr Topological properties of
concept spaces). Intuitively, one thinks of the elements of R as pieces of information, call them
concepts, and a basic open (↑e) is the collection of concepts that we can access as soon as we
can access some finite concept (e).

Proposition 1.3. The open sets of the topology induced by B are exactly the O ⊆ R which
satisfy the following condition for all a ∈ R:

a ∈ O ⇔ O ∋ e ⊆fin a, for some e ∈ R. (1)

Proof. We have to show that: there is I ⊆ Rfin such that O =
⋃

e∈I ↑e iff O satisfies Property
(1) for all a ∈ R. Let us show the two implications of the iff.

(⇒): Let I ⊆ Rfin, O =
⋃

e∈I ↑e and a ∈ R. We show the two implications of (1).
If a ∈ O then there is e ∈ I such that a ⊇ e. In particular, e is finite. Also, e ∈↑e, so e ∈ O.
If O ∋ e ⊆fin a for some e ∈ R, then by definition of O there is e′ ∈ I such that e ⊇ e′. By

Exercise 1(ii,iii) ↑e′ ⊇↑e ⊇↑a ∋ a. Then by definition of O we have a ∈ O.
(⇐): Assuming (1) for all a ∈ R, we have to show that O can be written as O =

⋃
e∈I ↑e, for

some I ⊆ Rfin. Consider the function I : O → P(Rfin) defined by I(a) := {e ∈ Rfin | a ⊇ e ∈ O}.
Let I :=

⋃
a∈O I(a) ⊆ Rfin. We claim that O =

⋃
e∈I ↑e. Let us show the two inclusions:

If a ∈ O then by (1)(⇒) there is e ∈ I(a). So e ∈ I and a ∈↑e and we are done.
If a ∈

⋃
e∈I ↑e, then there is e ∈ Rfin such that a ⊇ e, with e ∈ I(b) for some b ∈ O. In

particular e ∈ O, and by (1)(⇐) we have a ∈ O.

Notice that, from the above, it immediately follows that an open O is ⊆-upward-closed.

Remark 1.4. We immediately see that Rfin is dense in R since, from the proposition above,
every non-empty open set of R has non-empty intersection with Rfin.

Remark 1.5. It is also easy to see that the open neighbourhoods of a point a ∈ R are exactly
those sets of shape ↑e ∪

⋃
d∈I ↑d, for e ⊆fin a and I ⊆ Rfin. From this, it follows that the

neighbourhoods of a are exactly the sets ↑e ∪ A, for e ⊆fin a and A ⊆ R. In order to know if a
given b ∈ R belongs to a fixed neighbourhood of a ∈ R then, it is enough to test if it contains a
fixed finite number of elements of a.

Proposition 1.6. R is T0 (i.e. any two different points are distinguished by the topology, i.e.
have different neighbourhoods).

Proof. Let a ̸= b in R. We have to show that there is an open set which contains exactly one
among a and b. Since a ̸= b, there is n ∈ a − b (or in b − a, which is the same). Now ↑{n} is
open by Remark 1.2. Moreover, ↑{n} ∋ a since a ⊇ {n}, and ↑{n} ̸∋ b since b ̸⊇ {n}.

Specialization orders

Definition 1.7. The specialization preorder of a topology is defined by setting a ≤ b iff N(a) ⊆
N(b), where N(c) is a local base at c. That is, a ≤ b iff a ∈ O ⇒ b ∈ O for all open O.

Remark that open sets of a topological space X are upward-closed wrt ≤, by definition of ≤.
The specialization preorder is always a preorder (i.e. reflexive and transitive, which are im-

mediate), but in general antisymmetry fails, so we do not have a poset. However, we have:
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Ex. 3 — A space is T0 iff it is a poset with the specialization order. Hence, (R,≤) is a poset.

Answer (Ex. 3) — See Section 4.

Lemma 1.8. The specialization order of R coincides with set-theoretic inclusion. That is, for
a, b ∈ R, we have a ⊆ b iff a ≤ b.

Therefore, we immediately have that every non-empty subset D of R admits sup
⋃

D in R.

Proof. (⇒) : Suppose a ⊆ b and let O open with a ∈ O. We have already remarked that O is
⊆-upward closed, so we are done.

(⇐): Let us start by assuming that a ∈ Rfin. Then ↑a is open by Remark 1.2 and contains a
by Exercise 1. So from a ≤ b we have b ∈↑a, i.e. b ⊇ a. Now for the case of a generic a ∈ R (not
necessarily finite), let n ∈ a. Then {n} ⊆fin a, so by the (⇒) just proved, {n} ≤ a. But a ≤ b
by hypothesis, {n} ≤ b. Now by the finite case we just proved, {n} ⊆ b, i.e. n ∈ b.

Remark 1.9. A space is T1 if x ̸= y ⇒ ∃ open U, V s.t. x ∈ U ̸∋ y and x /∈ V ∋ y. Clearly,
Hausdorff⇒ T1 ⇒ T0. Also, in a T1 space, x ≤ y ⇒ x = y. Hence, R is not T1 nor Hausdorff.

Remark 1.10. We have seen that a topology τ always induces a preorder ≤τ , namely its spe-
cialization preorder.

Conversely, given a partial order ⪯, one can always take the finest topology which has ⪯ as
specialization preorder, called the Alexandroff topology of ⪯, and the coarser topology with the
same property, sometimes called the upper topology of ⪯.

In our case R, we have seen that the specialization partial order of our topology is ⊆. However,
our topology is neither the Alexandroff topology of the inclusion, not the upper topology of the
inclusion. In fact, there is another intermediate solution to the problem of defining a topology
that has specialisation poset a given poset, and it is consists in taking its Scott topology. In the
next paragraph, we are going to see that our topology is indeed the Scott topology of the inclusion.

Scott-topology

Definition 1.11. A subset D of a poset X is called directed whenever D ̸= ∅ and for all
d, d′ ∈ D, {d, d′} admits an upper bound in D.

Example 1.12. Let a ∈ R. Then
⋃
↓fin a = a. Moreover, if a ̸= ∅, then ↓fin a is ⊆-directed.

Definition 1.13. Let (X,⪯) be a poset. Its Scott-topology is defined by declaring open the
subsets U of X such that:

1. U is upward closed (i.e. U ∋ x ⪯ y ⇒ U ∋ y)

2. for all directed D ⊆ X which admits
∨

D ∈ U , we have D ∩ U ̸= ∅.

Ex. 4 — Show that the Scott-open sets on a poset (X,⪯) form a topology on X indeed.

Answer (Ex. 4) — See Section 4.

* Ex. 5 — For a poset X, the set Oh := {x ∈ X | x ̸≤ h} is open in the Scott-topology.

Answer (Ex. 5) — See Section 4.
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Ex. 6 — The specialisation preorder of a Scott-topology on a poset (X,⪯) is (X,⪯).

Answer (Ex. 6) — See Section 4.

Definition 1.14. In a poset (X,⪯), we say that an element e ∈ X is compact iff for all directed
D ⊆ X admitting

∨
D, we have: if e ⪯

∨
D then e ⪯ d for some d ∈ D.

Proposition 1.15. In (R,⊆), the set of compact elements is Rfin.

Proof. Let e ∈ R.
(e compact ⇒ e finite): Wlog e ̸= ∅. Then by Example 1.12 ↓fin e is directed and admits sup

e. But then from e ⊆ e, the compactness of e yields e ⊆ d for some d ∈↓fin e. But the latter says
in particular that d is finite, thus e is too (actually, e = d).

(e finite ⇒ e compact): Let D ⊆ R directed (always admitting
∨

D =
⋃

D, thanks to
Lemma 1.8), and suppose e ⊆

⋃
D. We have to show that e ⊆ d for some d ∈ D. Wlog e ̸= ∅,

otherwise it is trivial (as D ̸= ∅). Now, there is a function1 d(_) : e→ D such that n ∈ dn for all
n ∈ e. But since e is finite and non-empty, the image {dn | n ∈ e} is a finite non-empty subset of
D. But D is directed, so it contains an upper bound of all its finite non-empty subsets, therefore
there is u ∈ D such that dn ⊆ u for all n ∈ e. We claim that this is our desired set, i.e. we have
to show that e ⊆ u. Let n ∈ e. So n ∈ dn, i.e. {n} ⊆ dn, so {n} ⊆ u, i.e. n ∈ u.

Theorem 1.16. The topology that we are considering on R coincides with the Scott-topology of
the partial order ⊆ in R.

Ex. 7 — Prove it.

Answer (Ex. 7) — See Section 4.

Observe that from Theorem 1.16 and Exercise 6 we obtain again Lemma 1.8.
In fact, all the properties that we will mention here do not really depend on the particular

space R: they only depend on the fact that R is the Scott topology of a (directed)-cpo (and
even algebraic). Since this coincides with its specialisation preorder, one often even drops the
topological language and just talks in terms of order theory (which, for those particular orders,
is called domain theory). However, we will not develop domain theory except some basic results,
and we will mostly concentrate on R by employing a topological language.

2 Scott-Continuous functions
Lemma 2.1. Let X, Y be topological spaces. If a function f : X → Y is continuous, then it is
monotone with respect to their specialization preorders.

Ex. 8 — Prove Lemma 2.1

Answer (Ex. 8) — See Section 4.

Lemma 2.2. Let X, Y be posets and f : X → Y monotone. Then f sends directed sets to
directed sets.

1Since e is finite we do not even need the axiom of choice for this.
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Proof. We have to show that, if D is directed in X, then fD is directed in Y . That fD ̸= ∅ is
trivial from the fact that, being D directed, D ̸= ∅. Now let x, x′ ∈ D. Since D is directed there
is c ∈ D upper bound of x, x′. Thus, f(c) is a desired upper bound of f(x), f(x′) in fD.

Theorem 2.3. Let X, Y be posets and f : X → Y . The following are equivalent:

i): f is continuous wrt the Scott-topologies on X, Y .

ii): For all directed D ⊆ X admitting sup
∨

D ∈ X, there exists
∨

(fD) in Y and it is:∨
(fD) = f(

∨
D). (Scott-Continuity)

Proof. ((i) ⇒ (ii)) : In order to show that f(
∨

D) ∈ Y is the sup of fD in Y we need to show
that, first, f(

∨
D) ≤ f(d) for all d ∈ D. This is immediate because f is continuous, so by

Lemma 2.1 it is monotone wrt its specialisation preorder, and we know from Exercise 6 that
such preorder is the one on X that we started with. Second, we have to show that f(

∨
D) is the

minimum of all upper bounds y of fD. Given such y, we need to show that f(
∨

D) ≤ y. But
this is the same as showing f(

∨
D) /∈ Oy, where the latter is the open in Y defined in Exercise 5.

Now for showing the desired result, suppose f(
∨

D) ∈ Oy). Then
∨

D ∈ f−1Oy. But the latter
is open in X, since Oy is open in Y and f is continuous. Therefore, by Definition 1.13(2), there
is d ∈ D that belongs to f−1Oy, i.e. f(d) ̸≤ y. But this is impossible, because y is an upper
bound of fD.

((ii) ⇒ (i)) : Let us first show that f is ⪯-monotone. For this, let x ⪯ x′. It is trivial
that ↓x′ is directed in X and that there is

∨
↓x′ = x′ ∈ X. By Scott-continuity, there is∨

(f ↓ x′) = f(
∨
↓ x′) = f(x′). But since x ⪯ x′, we have f(x) ∈ f ↓ x′, and therefore

f(x) ⪯
∨

(f ↓x′) = f(x′), and we are done. Now let us show the continuity of f . For this,
let U be Scott-open in Y . In order to show that f−1U is open in X, let us first show that
the latter is ⪯-upper closed. For this, let x ⪯ x′ in X such that f(x) ∈ U . By monotonicity,
U ∋ f(x) ⪯ f(x′), and because U is Scott-open, we have f(x′) ∈ U . Second, we have to show
that, given D directed in X admitting sup

∨
D ∈ f−1U , we have D ∩ f−1U ̸= ∅. By Scott-

continuity there is
∨

(fD) = f(
∨

D) ∈ U . Now by Lemma 2.2, fD is directed in Y . But since
U is Scott-open in Y and

∨
(fD) ∈ U for fD directed in Y , there is b ∈ fD ∩ U . This means

that there is d ∈ D such that f(d) ∈ U , i.e. d ∈ f−1U , and we are done.

Theorem 2.4. Let f : R→ R. The following are equivalent:

(i) f is continuous.

(ii) f is monotone for ⊆ and, for all a ∈ R and d ∈ Rfin, the following property (S) holds:
if

d ⊆ f(a)

then there is e ∈ Rfin such that

e ⊆ a and d ⊆ f(e).

(iii) for all a ∈ R and d ∈ Rfin we have:
d ⊆ f(a)

iff there is e ∈ Rfin such that

e ⊆ a and d ⊆ f(e).
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(iv) f is Scott-continuous (i.e. preserves direct unions) from (R,⊆) to (R,⊆).

Proof. From Theorem 2.3 and Theorem 1.16 we have (i)⇔ (iv). Let us do the other equivalences.
(i)⇒ (ii) : The fact that f is non-decreasing is Lemma 2.1 and Lemma 1.8. Let now a ∈ R

and d ∈ Rfin. If d ⊆ f(a), then a ∈ f−1 ↑d; but ↑d is open by Remark 1.2, so by continuity also
f−1 ↑d is open. Then by Proposition 1.3 there is e ∈ Rfin with f−1 ↑d ∋ e ⊆ a. In particular,
f(e) ⊇ d, and we are done.

(ii) ⇒ (iii) : Let a ∈ R and d ∈ Rfin. The left to right direction of the “iff” is exactly as
in the previous case (in particular, we do not use monotonicity of f). Let us now see the other
implication. Let e ∈ Rfin with e ⊆ a and d ⊆ f(e). By monotonicity f(e) ⊆ f(a), so f(a) ⊇ d
and we are done (in particular, we did not use the hypothesis (S)).

(iii) ⇒ (i) : Let O open, and we have to show that f−1O is open i.e., by Proposition 1.3,
that given a ∈ R, we have: f(a) ∈ O iff there is e ∈ Rfin with e ⊆ a and f(e) ∈ O.

From left to right: if f(a) ∈ O, by Proposition 1.3 there is d ∈ Rfin such that O ∋ d ⊆ f(a).
By (iii) there is e ∈ Rfin such that e ⊆ a and d ⊆ f(e). In particular, since O is upward-closed
because it is open, f(e) ∈ O.

From right to left: let e ∈ Rfin with e ⊆ a and f(e) ∈ O. By Proposition 1.3 there is d ∈ Rfin
such that O ∋ d ⊆ f(e). By (iii) we have d ⊆ f(a). In particular, since O is upward-closed
because it is open, f(a) ∈ O.

Remark 2.5. As a consequence of the theorem above, from the Scott-continuity and the fact that⋃
e⊆fina e = a of Example 1.12, all continuous f : R→ R satisfies:

f(a) =
⋃

e⊆fina

f(e).

We thus precisely have the approximation notion that we were looking for in the introduction.
In particular, remark that now a function Rfin → R does (uniquely) define a function [R→ R],
because the union (the limit, in this topology) is always defined.

As one could guess, a similar characterisation can be given for Scott-continuous functions on
arbitrary (directed-complete-)posets, instead of R, and with compact elements instead of Rfin.

3 Encoding (continuous) functions as points
Now that we found our notion of “nice” functions, with their correct notion of approximation,
we can proceed with the injection of the set of those nice functions into the base space.

Definition 3.1. Define the following encodings, clearly computable:

• pair : N× N→ N, pair(n, m) := 2n(2m + 1)− 1.

• list : N∗ → N, list([]) := 0 and list(n :: l) := 1 + pair(n, list(l)).

So we have a computable encoding ⟨_, _⟩ : N∗ × N→ N, defined by ⟨l, n⟩ := pair(list(l), n).

* Ex. 9 — Write their computable decoding functions unpair : N→ N × N, unlist : N→ N∗

showing that they are bijective. Conclude that also ⟨_, _⟩ is a computable and bijective decoding.

Answer (Ex. 9) — See Section 4.
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Definition 3.2. Define the following maps:

• set : N∗ → Rfin, set(n1, . . . , nk) := {n1, . . . , nk}

• kl : R→ P(N∗), kl(a) := {l ∈ N∗ | set(l) ⊆ a}. This map sends RE sets to RE sets.

Definition 3.3. Define the following functions:

• fun : R→ (R⇒ R),

fun(a)(b) := {n ∈ N | there is l ∈ kl(b) such that ⟨l, n⟩ ∈ a}.

We also define
@ := uncurry(fun) : R×R→ R.

• λ̃ : RR → R,
λ̃(f) := {⟨l, m⟩ ∈ N | l ∈ N∗, m ∈ f(set(l))}.

We then define
λ := λ̃∣∣

R⇒R

: (R⇒ R)→ R

where R⇒ R is the set of continuous functions from R to itself. λ(f) is sometimes called
the trace of f , as it provides the same exact information of f , but encoded in a finitary
way inside R.

Proposition 3.4. We indeed have Im(fun) ⊆ (R⇒ R), as claimed in the definition.

Proof. Let a ∈ R. In order to show that fun(a) : R→ R is continuous, we use Theorem 2.4 and
we only need to show that, given b ∈ R, d ∈ Rfin, we have d ⊆ fun(a)(b) iff d ⊆ fun(a)(e) for
some e ⊆fin b.

(⇐) : Let e ⊆fin b and n ∈ d ⊆ fun(a)(e). By definition of fun there is ln ∈ kl(e) (i.e.
set(ln) ⊆ e) with ⟨ln, n⟩ ∈ a. But it is immediate that kl(e) ⊆ kl(b), so n ∈ fun(a)(b).

(⇒) : Suppose d ⊆ fun(a)(b). Then, for all n ∈ d there is, by definition of fun, a list ln ∈ kl(b)
with ⟨ln, n⟩ ∈ a. So we have a function l(_) : d→ kl(b). But since both set(ln) and d are finite,
we have e :=

⋃
n∈d set(ln) ⊆fin b. Now let n ∈ d. In order to show that n ∈ fun(a)(e), we can

find l′ ∈ kl(e) with ⟨l′, n⟩ ∈ a. This is trivial by taking l′ := ln.

Proposition 3.5. @ : R×R→ R is continuous (wrt the product topology).

Proof. Remember that the product topology has {O1×O2 | O1, O2 open in R} as a basis. Let O
open in R. We show that @−1O = {(a, b) ∈ R×R | fun(a)(b) ∈ O} =

⋃
a∈R({a}× fun(a)−1O) is

open. We claim that
⋃

a∈R({a}×fun(a)−1O) =
⋃

e∈Rfin
(↑e×fun(e)−1O). Once this is proven, we

are done, because ↑e is open by Remark 1.2 and fun(e)−1O is open because fun(e) is continuous,
so @−1O would be a union of elements of the canonical base of the product topology. We leave
the two inclusions as the following:

* Ex. 10 — Conclude the proof of Proposition 3.5.

Answer (Ex. 10) — See Section 4.
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R

(R ⇒ R)

RR

λ

fun

Im(λ)

Figure 1: Retraction of R onto Im(λ) ≈ (R⇒ R) via λ ◦ fun.

Theorem 3.6. We have:
fun ◦ λ = idR⇒R. (β)

Moreover,
λ ◦ fun ⊇ idR (η̃)

Finally, for all f ∈ (R⇒ R), we have:

λ(f) =
⋃

fun(a)=f

a.

Proof. The “finally” claim is immediate: the (⊆) is immediate since, by (β), λ(f) is precisely
one of those a. For (⊇), if fun(a) = f , then using (η̃) we have λ(f) = λ(fun(a)) ⊇ a.

Let us prove the two equations.
(β) : We have to prove that fun(λ(f))(b) = f(b) for all b ∈ R. Let us first remark that, by

definition of fun, λ, given n ∈ N, b ∈ R we have: n ∈ fun(λ(f))(b) iff there is l ∈ N∗ such that
set(l) ⊆ b and n ∈ f(set(l)). Now we can do the two inclusions:

For (⊆), let n ∈ fun(λ(f))(b), i.e. (by what we just remarked) n ∈ f(set(l)) for some l ∈ N∗

with set(l) ⊆ b. But f is ⊆-monotone by Theorem 2.4, so f(set(l)) ⊆ f(b). Thus n ∈ f(b) and
we are done. For (⊇), let n ∈ f(b), i.e. {n} ⊆fin f(b). Since f is continuous, by Theorem 2.4
there is e ⊆fin b such that n ∈ f(e). But since e is finite, we can take any enumeration of e and
we have a list le ∈ N∗ such that set(le) = e ⊆ b and n ∈ f(e) = f(set(le)). By what we remarked
above, this means that n ∈ fun(λ(f))(b) and we are done.

(η̃) : Let us remark that, given n ∈ R, we have: n ∈ λ(fun(a)) iff there is l ∈ N∗, m ∈ N, h ∈
kl(set(l)) such that n = ⟨l, m⟩ and ⟨l, m⟩ ∈ a Now given n ∈ a, we trivially obtain the result by
taking l = h := unpair(unpair(n)1) and m := unpair(n)2.

If we had an equality in equation (η̃), we would call it the η-equation. So R does not
satisfy (η).

Definition 3.7. The structure (R, λ, @) is called the2 graph model.

In the next lecture we are going to see what and in which sense the graph model is a model of.
2Actually, there are many different graph models, and this is only one of them. They all have a similar

construction, that can be carried out for other sets than R = P(N). Even for N, the particular encodings that we
choose are just one choice among many possible. However, some properties of the graph model depend on the
choice of the encodings, and the ones that we have taken here are among the “good” choices.
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Remark 3.8. Remark that from (β) it follows that λ is injective and fun is surjective. That is,
as shown in Figure 1, that we have injected a space of functions into its base space. However, we
would like fun and λ be continuous, otherwise the so-called retraction of R onto R ⇒ R is not
necessarily interesting – say one defines fun arbitrarily out of the image of (R⇒ R). In order to
talk about continuity of them, one has to discuss the topology on the function space R⇒ R. This
can done by seeing R as an object of the category of algebraic cpo’s and R⇒ R is an exponential
object in that category. However, we will not do it now, and we take it as granted: then we have
that the pair (λ, fun) defines a topological retraction of R onto Im(λ) ≈ [R→ R].

Remark 3.9. Remark that we have retracted a space of functions onto its base space (intuitively
speaking, the topology identifies a functional space with 1 dimension). We could also retract R×R
onto R (intuitively speaking, the topology identifies 2 dimensions with 1 dimension). Therefore,
the topology we are considering doesn’t really carry a geometrical meaning, but rather it has to
be understood as a handy way for talking about order theoretic notions (in fact, domain theory).

Proposition 3.10. All continuous f : R→ R admit fixed points. More specifically, the function,
which is called a fixed point combinator,

Y : (R⇒ R)→ R Y (f) := @(δ(∆f ))

where δ : R → R × R is the diagonal δ(a) := (a, a) and ∆f := λ(f ◦ @ ◦ δ) ∈ R, gives one fixed
point of its input function, i.e. for all f we have:

f(Y (f)) = Y (f).

Proof. Immediate by using β-equation: Y (f) = @(δ(∆f )) = fun(∆f )(∆f ) = fun(λ(f ◦ @ ◦
δ))(∆f ) = (f ◦@ ◦ δ)(∆f ) = f(@(δ(∆f ))) = f(Y (f)).

Theorem 3.11. The set of RE sets is closed wrt the following rules:

λ(λ ◦ curry(
(n−1)
· · · (λ ◦ curry(projni )) · · · ))

f ∈ (R⇒ R) and computable
λ(f)

a b

@(a, b)

Comments on the proof. Try to convince yourself that any set defined by the rules above is RE.
This is not trivial but relatively straightforward using Scott-continuity and the fact that the
encodings previously defined preserve the fact of being RE.

In the next lecture we will take inspiration from the previous theorem in order to introduce the
λ-calculus, by mimicking the three cases above: In fact, the previous theorem tells us how how we
can inductively define a subset of all RE sets starting from basic pieces via some constructions.
In particular, the two inductive rules handle high-order encoding of functions. Therefore, it
makes sense to take precisely those basic pieces and constructions as a way of putting together
instructions for RE sets, i.e. how to put together pieces of code, i.e. how to build programs! We
will therefore take them as formal objects and declare them to be a programming language.
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4 Solutions to the exercises

Answer (Ex. 1) — All are immediate, since for all a, b, c ∈ R we have: (i): a ⊇ ∅, (ii): a ⊇ a;
(iii): a ⊆ b⇒↑a ⊇↑b; (iv): c ∈↑(a ∪ b) iff both c ⊇ a and c ⊇ b iff c ∈↑a∩ ↑b.

Answer (Ex. 2) — (i): We have to show that R =
⋃

e∈Rfin
↑e. (⊆): Exercise 1(i). (⊇): there

is nothing to prove.
(ii): Let A =↑a and B =↑b, for a, b ∈ Rfin. Then a ∪ b ∈ Rfin and thus C :=↑(a ∪ b) ∈ B. By
Exercise 1(ii) C = A ∩B and so we are done.

Answer (Ex. 3) — We have x ≤ y ≤ x in the specialization preorder iff x, y have exactly the
same open neighborhoods. So the antisymmetry of ≤ is exactly the contrapositive of the T0
property.

Answer (Ex. 4) — All is immediately checked. The only non-immediate check is the closure
of the second property of Scott-opens wrt finite intersections: Let I be a finite collection of
Scott-open sets in X, and let D be directed in X admitting

∨
D ∈

⋂
U∈I U . We need to show

that D ∩
⋂

U∈I U ̸= ∅. For all U ∈ I, we have
∨

D ∈ U , so since U is Scott-open there is
dU ∈ D ∩ U . This defines a function3 d(_) : I → D. Since I is finite and D is directed, there is
v ∈ D which upper bounds all dU for U ∈ I. Moreover, for all U ∈ I, we have U ∋ dU ≤ v and,
since U is ≤-upward closed because it is Scott-open, we obtain v ∈ U . Therefore, v ∈

⋂
U∈I U .

Answer (Ex. 5) — 1) of Definition 1.13: let x ≤ x′ and we show that x ∈ Oh ⇒ x′ ∈ Oh. We
show the contrapositive: if x′ /∈ O, then x′ ≤ h, but then x ≤ x′ ≤ h, so x /∈ Oh.
2) of Definition 1.13: Let B directed in X, and we show that

∨
B ∈ Oh ⇒ B ∩ Oh ̸= ∅. We

show the contrapositive: if B ∩Oh = ∅ then for all x ∈ B, x ≤ h, so by definition of sup we have∨
B ≤ h, so

∨
B /∈ Oh.

Answer (Ex. 6) — We have to show that x ≤ y in the specialisation preorder iff x ⪯ y in
X. (⇒): We have to show that x ⪯ y. Consider Oy of the Exercise 5, which is open. Remark
also that, in general, y /∈ Oy. But then since x ≤ y in the specialisation preorder, taking the
contrapositive of its definition we have that x /∈ Oy. And this means that x ⪯ y. (⇐): We have
to show that, given O open, if x ∈ O then y ∈ O. But this is trivially Definition 1.13(1).

Answer (Ex. 7) — Let O ⊆ R. We need to prove that O is Scott-open iff it satisfies (1) for
all a ∈ R.
(⇒) : Let a ∈ R. The right to left of (1) is immediate because O is ⊆-upward closed by definition
of Scott-open. For the left to right of (1), suppose a ∈ O. Now if O = R, then it is trivial,
because O = R ∋ ∅ ⊆fin a. If O ̸= R, then a ̸= ∅. Indeed, if a = ∅ then because O is upward
closed, we have O = R, which is not the case. But now since a ̸= ∅, Example 1.12 says that ↓fin a
is directed in R and admits a ∈ O as sup. Then by definition of Scott-open there is e ∈↓fin a∩O,
i.e. O ∋ e ⊆fin a.
(⇐) : We already remarked that the open O is ⊆-upward closed. Let now D ⊆ R be directed
with

⋃
D ∈ O, and we have to show that D∩O ̸= ∅. By (1) there is e ∈ O such that e ⊆fin

⋃
D.

But being finite, e is compact by Proposition 1.15, so there is d ∈ D such that e ⊆ d. But since
3Since I is finite we do not even need the axiom of choice for this.
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we just saw that O is ⊆-upward closed (or, equivalently, using the other side of (1)), we have
d ∈ O and we are done.

Answer (Ex. 8) — Let ≤,≤′ the specialization preorders of X and Y , respectively. Let x ≤ y
in X and O be open in Y . If f(x) ∈ O then x ∈ f−1O, which is open in X because f is
continuous, so y ∈ f−1O because x ≤ y, i.e. f(y) ∈ O. We have proved that f(x) ≤′ f(y).

Answer (Ex. 9) — They are given by the following programs.

unpair(j : N) : N× N unlist : N→ N∗

k ← j + 1 unlist(0) := []
n← 0 unlist(j + 1) := let (n, m) := unpair(j)
while(k ≥ 1) do in n :: unlist(m)

if(k even)
then

k ← k
2

n← n + 1
else

return (n , k−1
2 )

od

Answer (Ex. 10) — (⊆) : Let (a, b) ∈ {a} × fun(a)−1O, i.e. fun(a)(b) ∈ O. But by Proposi-
tion 1.3, there is h ⊆fin fun(a)(b) with h ∈ O. By definition of fun, this means that we have a
function l(_) : h → kl(b) such that ⟨ln, n⟩ ∈ a for all n ∈ h. Let now e := {⟨ln, n⟩ | n ∈ h} ∈ R.
Since h is finite, e is finite. By construction, e ⊆ a. Finally, if n ∈ h then ⟨ln, n⟩ ∈ e by definition
of e, i.e. h ⊆ fun(e)(b) by definition of fun. By Proposition 1.3, since O ∋ h finite, O ∋ fun(e)(b).
In conclusion, we found e ∈ Rfin such that (a, b) ∈↑e× fun(e)−1O.
(⊇) : Let (a, b) ∈↑e× fun(e)−1O, with e ∈ Rfin, i.e. we have e ⊆fin a and fun(e)(b) ∈ O. We have
to show that (a, b) ∈ {a} × fun(a)−1O, i.e. that fun(a)(b) ∈ O. We remark that, by definition
of fun, we have a function l(_) : fun(e)(b) → kl(b) such that ⟨ln, n⟩ ∈ e for all n ∈ fun(e)(b).
In particular, e ⊇ {⟨ln, n⟩ | n ∈ fun(e)(b)}, therefore the latter is finite because e is. But since
pair is injective, fun(e)(b) cannot be infinite, otherwise the latter set would be infinite as well,
which we just saw is not the case. So we have proven that fun(e)(b) is finite. Moreover, by
looking at the definition of fun, we see that fun(e)(b) ⊆ fun(a)(b) because e ⊆ a. But then from
O ∋ fun(e)(b), Proposition 1.3 gives O ∋ fun(a)(b).
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